
Folio 2212

Reconditioning Crawler Lower Works

© 2010 Manitowoc.

Due to continuing product innovation, specifications in this manual are subject to change without notice.

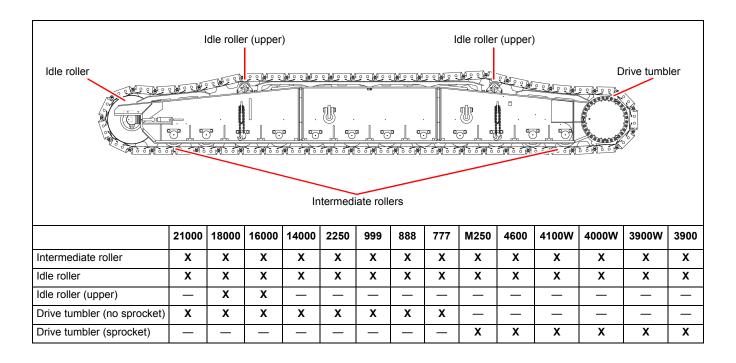
Contents

1.0	Int	roduction	5		
	1.1	Purpose	5		
	1.2	Parts covered in this manual	5		
2.0	Ins	spection	6		
	2.1	Spalling, cracking, and deformation	6		
	2.2	Determining wear depth			
3.0	Re	build	8		
	3.1	Surface condition and preparation	8		
	3.2	Preheat, interpass, and slow cooling			
		3.2.1 Preheat			
		3.2.2 Interpass	g		
		3.2.3 Post heat and slow cooling	9		
	3.3	Welding electrodes and parameters	g		
	3.4	Post weld inspection	9		
4.0	Ар	pendix	10		
	4.1	emperature, electrode, and welding parameters			
	4.2	Intermediate roller inspection			
		4.2.1 Intermediate roller — 3900W, 4000W, 4100W, M250, 777, 888, 999, 2250, 1400			
			12		
		4.2.2 Intermediate roller — 3900	13		
		4.2.3 Intermediate roller — 4600	13		
		4.2.4 Intermediate roller — 16000	14		
		4.2.5 Intermediate roller — 18000	15		
	4.3	Idle roller inspection	16		
		4.3.1 Idle roller — 3900	16		
		4.3.2 Idle roller — 3900W, 4000W, 4100W, M250, 888, 999, 2250, 14000, 21000	17		
		4.3.3 Idle roller — 777	18		
		4.3.4 Idle roller — 16000	19		
		4.3.5 Idle roller — 4600, 18000	20		
		4.3.6 Idle roller (upper) — 16000	21		
		4.3.7 Idle roller (upper) — 18000	21		
	4.4	Drive tumbler (no sprocket) inspection	22		
		4.4.1 Drive tumbler (no sprocket) templates — 777	22		
		4.4.2 Drive tumbler (no sprocket) templates — 888, 999, 14000	23		
		4.4.3 Drive tumbler (no sprocket) templates — 2250, 21000	24		
		4.4.4 Drive tumbler (no sprocket) templates — 16000, 18000	25		
	4.5	Drive tumbler (with sprocket) inspection	26		
		4.5.1 Sprocket template — 3900, 4000W, 4100W, 4500/4600, M250	26		

	4.5.2	Tumbler template — 4000W, 4100W, M250	. 27
	4.5.3	Tumbler template — 4500/4600	. 28
46	Inspec	tion of travel sprockets	29

1.0 Introduction

1.1 Purpose


This publication contains information for inspecting and rebuilding drive tumblers, sprockets, intermediate rollers, and idle rollers in order to extend component life.

This publication is NOT intended for use repairing structural damage.

This publication is intended

- to provide crane owners with recommended inspection practices as well as procedures, parameters and welding filler materials to be used when the owner wishes to refurbish rather than replace worn crawler components;
- only for use on surfaces designed to wear during normal use and operation of the equipment;
- · for use on only those components or surfaces specifically outlined in this document.

1.2 Parts covered in this manual

2.0 Inspection

2.1 Spalling, cracking, and deformation

Prior to performing any buildup operation, all components must be thoroughly inspected for any cracking or spalling. Spalling will appear as a pitted rough surface, an example is shown below:

Any spalled area should be blend ground to match the surrounding surface prior to weld buildup. Any loose or fatigued material must also be removed prior to welding.

Cracks can be located by using the Magnetic Particle Testing (MT) or the Dye Penetrant Testing (PT) methods. MT and PT tests should be performed by qualified personnel. Both MT and PT should only be performed on relatively smooth surfaces in order to prevent false positives. If a crack is located the component should be replaced rather than rebuilt.

Deformation of wear components can appear as a "Mushrooming" effect. This generally occurs over time in rollers due to the constant compressive stress placed on the wear edges. In order for a component to function properly after buildup the mushroomed material must be removed and proper dimensions restored, prior to welding.

In the example below, the mushroomed material is removed and the 45° x 0.25" (6.35mm) bevel is added:

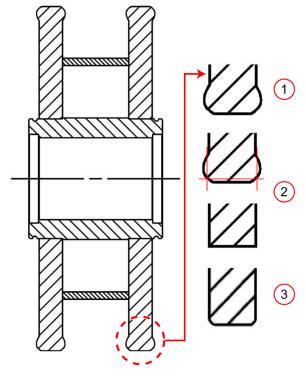


Figure 1: Reconditioning process

2.2 Determining wear depth

Tumblers, rollers, and sprockets are case hardened in high wear areas in order to extend their life. Weld build up should only be conducted after case hardening is fully worn away. If build up will be performed prior to full wear of hardened case, then the surface must be softened by annealing. Annealing can be accomplished by gradually heating the surface to 1000°F (538°C) and slow cooling to ambient temperature.

Part	Wear Depth Procedure
Intermediate roller	Remove all dirt, grease, oil, and debris from surface of roller.
intermediate roller	Measure depth of wear (see page 12).
Idle roller	Remove all dirt, grease, oil and debris from surface of roller.
Tule Toller	2. Measure depth of wear (see page 16).
Drive tumbler (no sprocket)	If tumbler is removed from crawler, conduct a visual inspection and MT (magnetic particle testing) inspection of splines for cracking and excessive spalling. If cracks and/or excessive spalling is found on splines, Drive Tumbler should be replaced with a new component. If repair is feasible, based on inspection of splines, go to step 2.
	2. Remove all dirt, grease, oil and debris from surface of tumbler.
	Measure depth of wear using profile gage (see page 22).
Drive tumbler (sprocket)	Remove all dirt, grease, oil and debris from surface of tumbler and from sprocket teeth.
	2. Measure depth of wear using profile gage (see page 26).
Travel sprockets	Remove all dirt, grease, oil and debris from sprocket teeth.
Travol oproducto	2. Measure depth of wear using profile gage (see page 29).

3.0 Rebuild

3.1 Surface condition and preparation

- All surfaces that will be welded must be relatively smooth and level in order to allow for uniform deposit of weld buildup. Any uneven surfaces should be ground to a clean, smooth finish in order to allow for even weld layers (see Figure 2 on page 8).
- Any surface that will be welded must be clean and free of all dirt, oil, grease, paint and other debris. Any
 contamination of the weld area can introduce hydrogen into the weld and lead to cracking in the weld or heat
 affected zone (HAZ).

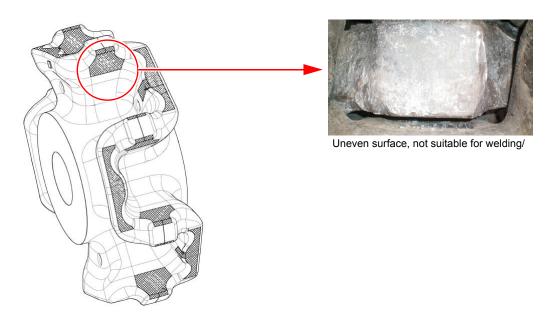


Figure 2: Unsuitable welding surface

3.2 Preheat, interpass, and slow cooling

3.2.1 Preheat

- Preheating is necessary in order to prevent cracking in the weld or HAZ. Preheat reduces the quench rate of
 the weld and surrounding material, allowing stresses in the material to slowly relax reducing the chance of hot
 cracking or underbead cracking. Preheat also aids in preventing hydrogen from being introduced into the weld,
 reducing the chance of delayed cracking.
- Preheat must be closely monitored during the entire weld cycle, preferably through the use of temperature
 indicating crayons. At the crane owner's option, touch pyrometers or infrared pyrometers may be substituted.
 However, these devices must be properly calibrated and used according to the devices operating instructions
 in order to ensure an accurate reading.

3.2.2 Interpass

Care must also be taken not to exceed the maximum interpass temperature. Exceeding a materials maximum
interpass temperature can have adverse affects on the heat treat condition and metallurgical properties of the
component, reducing life cycle and component effectiveness.

3.2.3 Post heat and slow cooling

- Slow cooling is essential to the welding process for any high strength steel material. Slow cooling helps to ensure that stresses in the base material and weld have time to relax, helping to prevent underbead and weld cracking. Slow cooling shall be accomplished by the use of a thermal blanket or other insulating material. Kaowool, Cerawool or comparable ceramic fiber blankets are recommended.
- Slow cooling is of greater importance in cast components than in plate material due to the nature of the casting
 process and attributes of the material. Cast components must be Post Weld Heated to ensure that cooling
 occurs at a slow enough rate to prevent cracking.
- Preheat, Interpass and Post Heat temperatures shall conform to Table 1 on page 10.

3.3 Welding electrodes and parameters

- When restoring a wear component to working condition through weld buildup, it is imperative that any filler
 material match as closely as possible the hardness and wear resistance of the original component.
 Undermatching or over-matching the wear resistance of the restored component can lead to premature failure
 of either the wear component or other components with which it comes into contact.
- In order to match the hardness and wear resistance of the original component surface, a high wear resistant
 hard-surfacing welding electrode must be used for the buildup of tumblers, sprockets, intermediate rollers and
 idle rollers for model 18000 machines. Idle rollers on other model machines may be reconditioned using
 alternate electrodes. See "Temperature, electrode, and welding parameters" on page 10 for details.
- The recommended welding process is Self-Shielded Flux Core Arc Welding (FCAW-S). This process can be
 performed with relative ease in shop or field conditions. In the event that wire feed equipment is not available at
 the repair site, the Shielded Metal Arc Welding (SMAW) or "Stick Welding" process is the recommended
 alternative. See "Temperature, electrode, and welding parameters" on page 10 for details and electrode
 selection for both processes.

3.4 Post weld inspection

- Following slow cooling to ambient temperature, as detailed in "3.2.3 Post heat and slow cooling" on page 9, the welded component must be inspected for cracking or other surface discontinuities.
- Magnetic Particle Inspect the welded surface. Any cracks or other defects found must be repaired according to the parameters and practices previously established in this document.
- The welding electrodes referenced in this folio can be purchased through your local welding supply distributor.

Manufacturer contact information:

The Lincoln Electric Company 22801 Saint Clair Ave Euclid, OH 44117 http://www.lincolnelectric.com Postle Industries Inc. PO Box 42037 Cleveland, OH 44142 (800) 321-2978 http://www.postle.com Stoody - Thermadyne 16052 Swingley Ridge Rd. Suite 300 St. Louis, MO 63017 (800) 426-1888 http://www.thermadyne.com/stoody/

4.0 Appendix

4.1 Temperature, electrode, and welding parameters

Table 1: Preheat, interpass, and post heat temperatures

Model Preheat		Interpass	Post heat			
	Intermediate rollers					
All 400°F (204°C)		400°F – 600°F (204°C – 316°C)	550°F (288°C)			

		Idle rollers	
3900	400°F (204°C)	400°F – 600°F (204°C – 316°C)	550°F (288°C)
3900W	200°F (93°C)	200°F – 400°F (93°C – 204°C)	n/a
4000W	200°F (93°C)	200°F – 400°F (93°C – 204°C)	n/a
4100W	200°F (93°C)	200°F – 400°F (93°C – 204°C)	n/a
4600	400°F (204°C)	400°F – 600°F (204°C – 316°C)	550°F (288°C)
M250	200°F (93°C)	200°F – 400°F (93°C – 204°C)	n/a
777	200°F (93°C)	200°F – 400°F (93°C – 204°C)	n/a
888	200°F (93°C)	200°F – 400°F (93°C – 204°C)	n/a
999	200°F (93°C)	200°F – 400°F (93°C – 204°C)	n/a
2250	200°F (93°C)	200°F – 400°F (93°C – 204°C)	n/a
14000	200°F (93°C)	200°F – 400°F (93°C – 204°C)	n/a
16000	300°F (149°C)	400°F – 600°F (204°C – 316°C)	550°F (288°C)
18000	400°F (204°C)	400°F – 600°F (204°C – 316°C)	550°F (288°C)
21000	200°F (93°C)	200°F – 400°F (93°C – 204°C)	n/a

	Drive tumblers					
All	400°F (204°C)	400°F – 600°F (204°C – 316°C)	550°F (288°C)			

	Drive tumblers				
All	400°F (204°C)	400°F – 600°F (204°C – 316°C)	550°F (288°C)		

Table 2: Electrode selection

Welding process	Electrode			
FCAW-S	Lincoln Lincore 40-O	5/64" diameter		
FCAW-S	Postle MCC-42	1/16" diameter		
SMAW	Stoody 1105	5/32" diameter		
SMAW	E7018-M (idle rollers only)*	5/32" diameter		
SMAW	E11018-M (idle rollers only)**	5/32" diameter		
* First layer. Does NOT apply to model 18000. ** Second through fourth layers. Does NOT apply to model 18000.				

Table 3: Welding parameters

Electrode	Polarity	Wire feed Speed/Amps	Volts	Stickout
Lincoln Lincore 40-O	DC+	125 – 185 ipm (3.16 – 4.7 m/min)	24 – 27	1.5 – 2.0 in (38 – 51 mm)
Postle MCC-42	DC-	200 – 300 ipm (5.1 – 7.6 m/min)	24 – 26.5	1.0 – 1.5 in (26 – 38 mm)
Stoody 1105	DC+	150 – 200 Amps	n/a	n/a
E7018-M	DC+	150 – 170 Amps	n/a	n/a
E11018-M	DC+	150 – 170 Amps	n/a	n/a

Table 4: Maximum buildup

Item	Weld layers*			
Idle rollers	4 layers			
Intermediate rollers	4 layers			
Sprockets	2 layers			
Tumblers 2 layers				
* Maximum layer depth should be approximately 1/8" (3.2 mm).				

4.2 Intermediate roller inspection

Model		Dimensions		Drawing reference
Wodel	Α	В	С	Drawing reference
3900	2.19 in (55.63 mm)	9.00 in (228.60 mm)	18.00 in (457.20 mm)	Figure 4 on page 13
3900W	2.19 in (55.63 mm)	4.63 in (117.60 mm)	14.06 in (357.12 mm)	Figure 3 on page 12
4000W	2.19 in (55.63 mm)	4.63 in (117.60 mm)	14.06 in (357.12 mm)	Figure 3 on page 12
4100W	2.19 in (55.63 mm)	4.63 in (117.60 mm)	14.06 in (357.12 mm)	Figure 3 on page 12
4600	3.50 in (88.90 mm)	7.00 in (177.80 mm)	20.00 in (508.00 mm)	Figure 5 on page 13
M250	2.19 in (55.63 mm)	4.63 in (117.60 mm)	14.06 in (357.12 mm)	Figure 3 on page 12
777	2.19 in (55.63 mm)	4.63 in (117.60 mm)	14.06 in (357.12 mm)	Figure 3 on page 12
888	2.19 in (55.63 mm)	4.63 in (117.60 mm)	14.06 in (357.12 mm)	Figure 3 on page 12
999	2.19 in (55.63 mm)	4.63 in (117.60 mm)	14.06 in (357.12 mm)	Figure 3 on page 12
2250	2.19 in (55.63 mm)	4.63 in (117.60 mm)	14.06 in (357.12 mm)	Figure 3 on page 12
14000	2.19 in (55.63 mm)	4.63 in (117.60 mm)	14.06 in (357.12 mm)	Figure 3 on page 12
16000	3.62 in (91.95 mm)	7.24 in (183.90 mm)	16.93 in (430.02 mm)	Figure 6 on page 14
16000 (heavy)	3.62 in (91.95 mm)	7.24 in (183.90 mm)	18.00 in (457.20 mm)	Figure 6 on page 14
18000	3.62 in (91.95 mm)	7.24 in (183.90 mm)	18.00 in (457.20 mm)	Figure 7 on page 15
21000	2.19 in (55.63 mm)	4.63 in (117.60 mm)	14.06 in (357.12 mm)	Figure 3 on page 12

Table 5: Intermediate roller nominal dimensions

4.2.1 Intermediate roller — 3900W, 4000W, 4100W, M250, 777, 888, 999, 2250, 14000, 21000

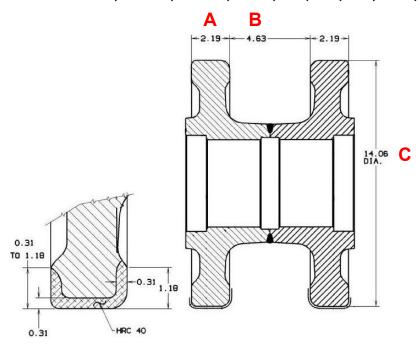


Figure 3: Intermediate roller — 3900W, 4000W, 4100W, M250, 777, 888, 999, 2250, 14000, 21000

4.2.2 Intermediate roller — 3900

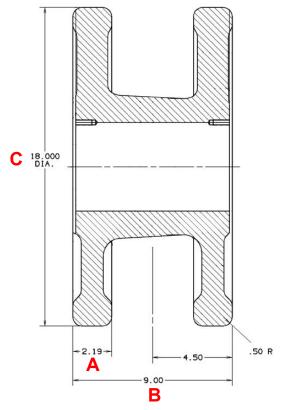


Figure 4: Intermediate roller — 3900

4.2.3 Intermediate roller — 4600

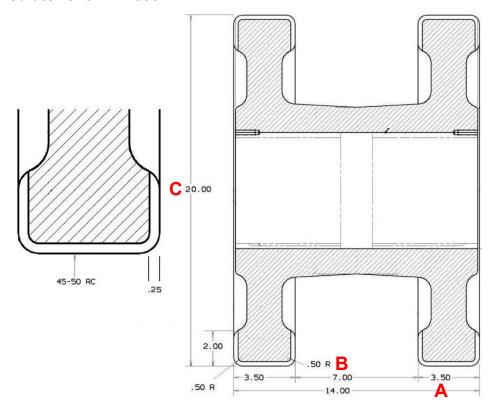


Figure 5: Intermediate roller — 4600

4.2.4 Intermediate roller — 16000

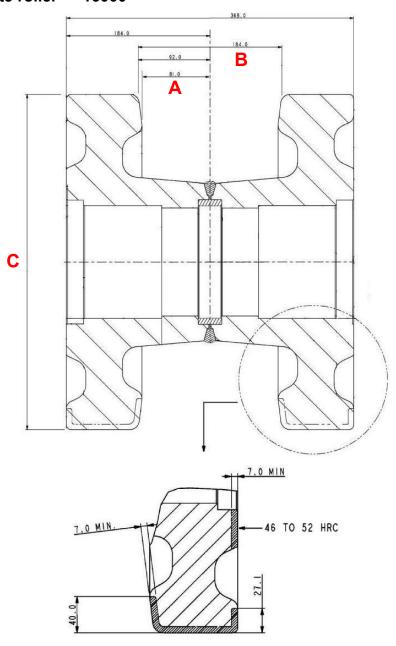


Figure 6: Intermediate roller — 16000

4.2.5 Intermediate roller — 18000

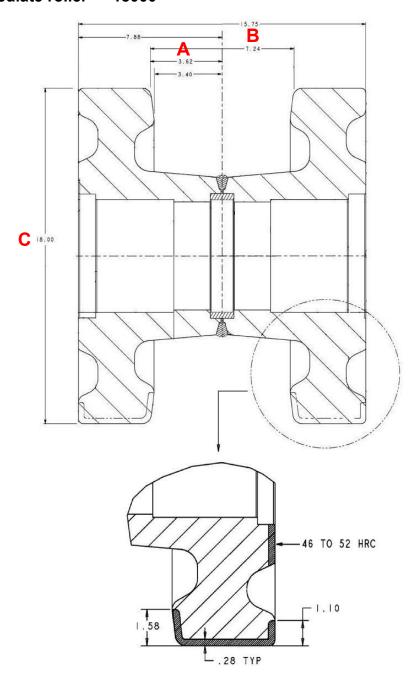


Figure 7: Intermediate roller — 18000

4.3 Idle roller inspection

Model		Drawing reference			
Wodei	Α	В	С	Chamfers	Drawing reference
3900	2.25 in (57.15 mm)	4.50 in (114.30 mm)	29.50 in (749.30 mm)	n/a	Figure 8 on page 16
3900W	2.00 in (50.80 mm)	4.50 in (114.30 mm)	34.00 in (863.60 mm)	0.25 in (6.35 mm) x 45°	Figure 9 on page 17
4000W	2.00 in (50.80 mm)	4.50 in (114.30 mm)	34.00 in (863.60 mm)	0.25 in (6.35 mm) x 45°	Figure 9 on page 17
4100W	2.00 in (50.80 mm)	4.50 in (114.30 mm)	34.00 in (863.60 mm)	0.25 in (6.35 mm) x 45°	Figure 9 on page 17
4600	3.50 in (88.90 mm)	4.50 in (114.30 mm)	36.88 in (936.75 mm)	n/a	Figure 12 on page 20
M250	2.00 in (50.80 mm)	4.50 in (114.30 mm)	34.00 in (863.60 mm)	0.25 in (6.35 mm) x 45°	Figure 9 on page 17
777	1.75 in (44.45 mm)	4.50 in (114.30 mm)	29.50 in (749.30 mm)	0.25 in (6.35 mm) x 45°	Figure 10 on page 18
888	2.00 in (50.80 mm)	4.50 in (114.30 mm)	34.00 in (863.60 mm)	0.25 in (6.35 mm) x 45°	Figure 9 on page 17
999	2.00 in (50.80 mm)	4.50 in (114.30 mm)	34.00 in (863.60 mm)	0.25 in (6.35 mm) x 45°	Figure 9 on page 17
2250	2.00 in (50.80 mm)	4.50 in (114.30 mm)	34.00 in (863.60 mm)	0.25 in (6.35 mm) x 45°	Figure 9 on page 17
14000	2.00 in (50.80 mm)	4.50 in (114.30 mm)	34.00 in (863.60 mm)	0.25 in (6.35 mm) x 45°	Figure 9 on page 17
16000	2.50 in (63.50 mm)	7.10 in (180.34 mm)	36.81 in (934.97 mm)	0.25 in (6.35 mm) x 45°	Figure 11 on page 19
16000 (upper)	7.87 in (199.90 mm)	4.00 in (101.60 mm)	n/a	0.79 in (20.07 mm) x 45° 0.20 in (5.08 mm) x 45°	Figure 13 on page 21
18000	3.50 in (88.90 mm)	14.00 in (355.60 mm)	36.88 in (936.75 mm)	n/a	Figure 12 on page 20
18000 (upper)	15.63 in (397.00 mm)	18.00 in (457.20 mm)	n/a	0.13 in (3.30 mm) x 45°	Figure 14 on page 21
21000	2.00 in (50.80 mm)	4.50 in (114.30 mm)	34.00 in (863.60 mm)	0.25 in (6.35 mm) x 45°	Figure 9 on page 17

Table 6: Idle roller nominal dimensions

4.3.1 Idle roller — 3900

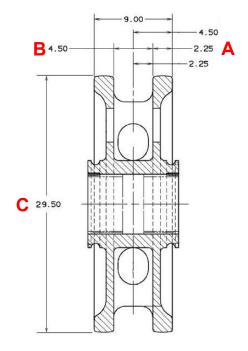


Figure 8: Idle roller — 3900

4.3.2 Idle roller — 3900W, 4000W, 4100W, M250, 888, 999, 2250, 14000, 21000

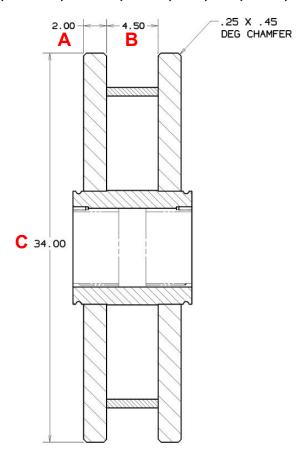


Figure 9: Idle roller — 3900W, 4000W, 4100W, M250, 888, 999, 2250, 14000, 21000

4.3.3 Idle roller — 777

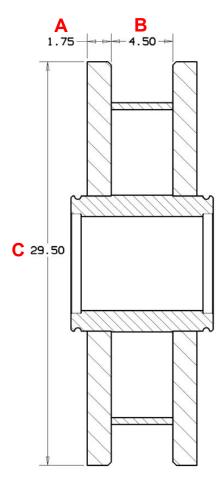


Figure 10: Idle roller — 777

4.3.4 Idle roller — 16000

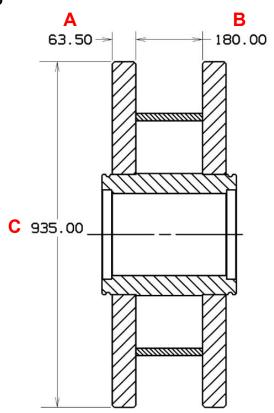


Figure 11: Idle roller — 16000

4.3.5 Idle roller — 4600, 18000

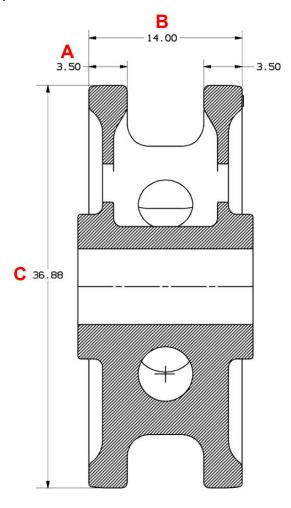


Figure 12: Idle roller — 4600, 18000

4.3.6 Idle roller (upper) — 16000

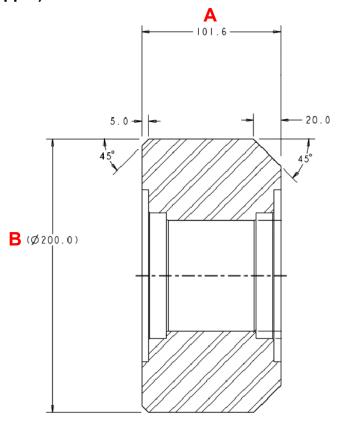


Figure 13: Idle roller (upper) — 16000

4.3.7 Idle roller (upper) — 18000

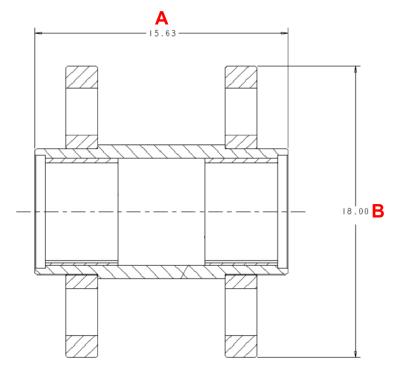


Figure 14: Idle roller (upper) — 18000

4.4 Drive tumbler (no sprocket) inspection

Model	Templates*	Template part #
777	Figure 15 on page 22	81011241 81011242
888 999 14000	Figure 16 on page 23	81011353 81011354
2250 21000	Figure 17 on page 24	81010892 81010893
16000 18000	Figure 18 on page 25	A18290 A18291
* All templates can be purchased through Manitowoc Crane Care.		

4.4.1 Drive tumbler (no sprocket) templates — 777

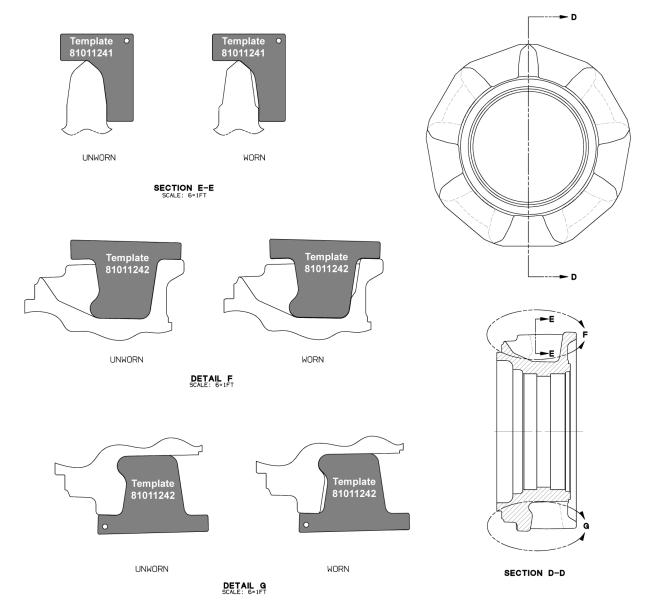


Figure 15: Drive tumbler (no sprocket) templates — 777

4.4.2 Drive tumbler (no sprocket) templates — 888, 999, 14000

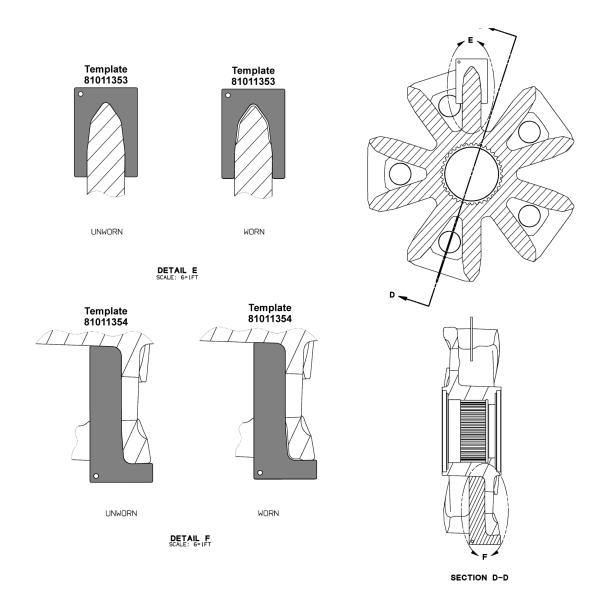


Figure 16: Drive tumbler (no sprocket) templates — 888, 999, 14000

4.4.3 Drive tumbler (no sprocket) templates — 2250, 21000

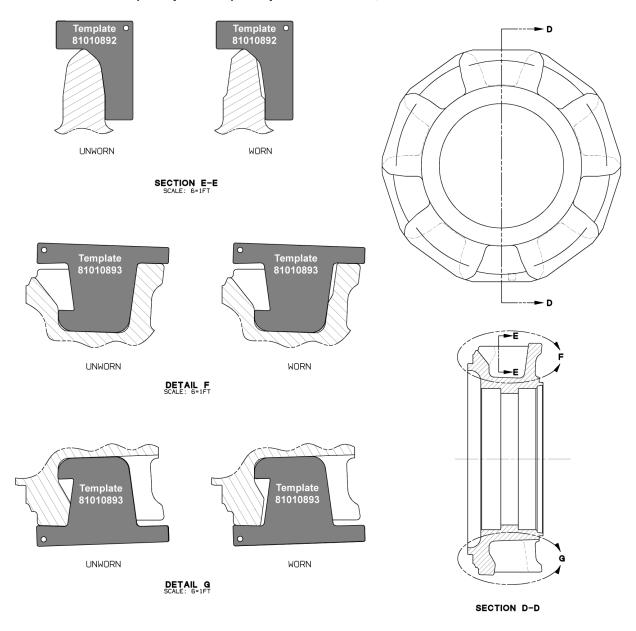


Figure 17: Drive tumbler (no sprocket) templates — 2250, 21000

4.4.4 Drive tumbler (no sprocket) templates — 16000, 18000

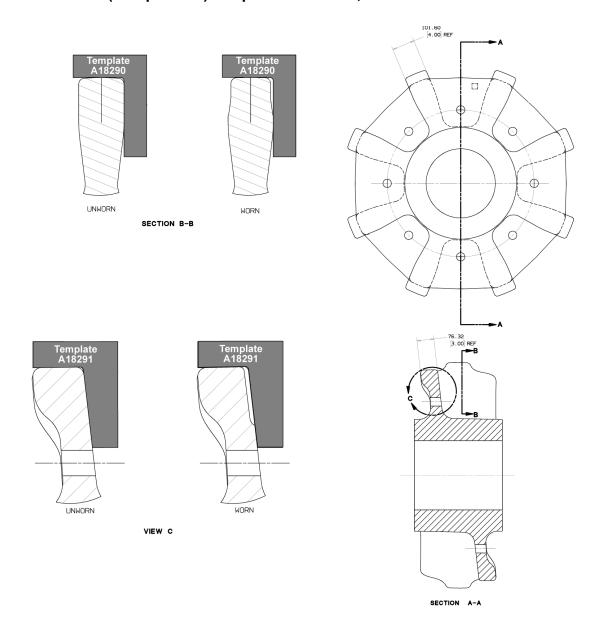


Figure 18: Drive tumbler (no sprocket) templates — 16000, 18000

4.5 Drive tumbler (with sprocket) inspection

Model	Templates*	Template part #
3900	Figure 19 on page 26	81011236
4000W	Figure 19 on page 26	81011233
	Figure 20 on page 27	81011338 81011337
4100W	Figure 19 on page 26	81011234
	Figure 20 on page 27	81011339 81011340
4500 4600	Figure 19 on page 26	81011237
	Figure 21 on page 28	81011343 81011344
M250	Figure 19 on page 26	81011235
	Figure 20 on page 27	81011339 81011340
* All templates can	be purchased through Manitow	oc Crane Care.

4.5.1 Sprocket template — 3900, 4000W, 4100W, 4500/4600, M250

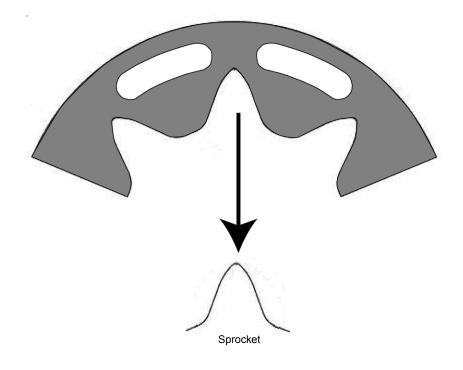


Figure 19: Drive tumbler (with sprocket) templates — 3900

4.5.2 Tumbler template — 4000W, 4100W, M250

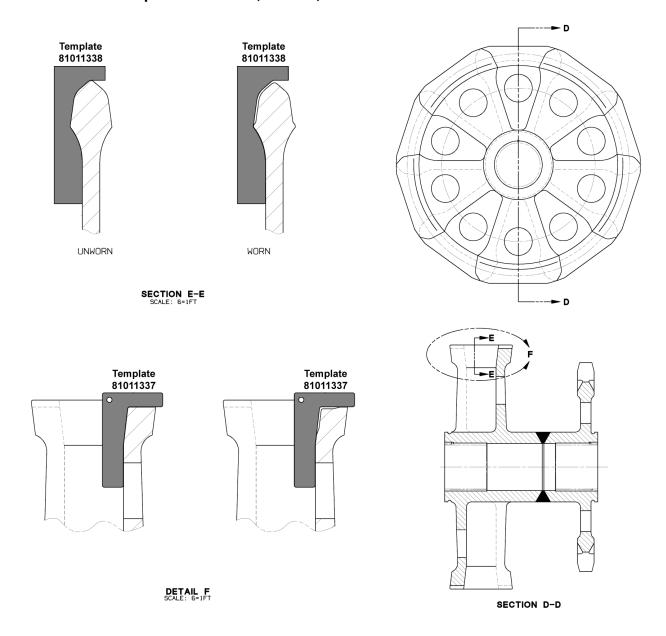


Figure 20: Tumbler template — 4000, 4100W, M250

4.5.3 Tumbler template — 4500/4600

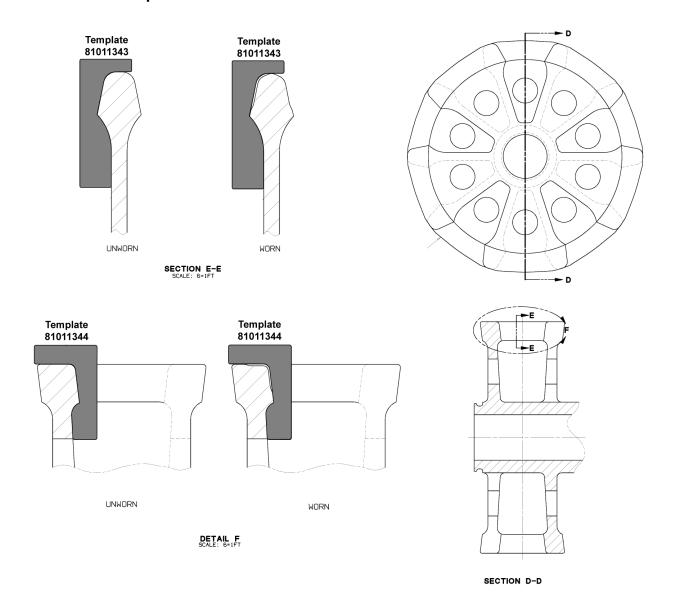


Figure 21: Tumbler template — 4500/4600

4.6 Inspection of travel sprockets

Model	Templates*	Template part #
3900	n/a	n/a
3900W	Figure 22 on page 29	81011246
4000W	n/a	n/a
4100W	n/a	n/a
4600	Figure 22 on page 29	81011232
M250	n/a	n/a
* All templates can	be purchased through Manitow	oc Crane Care.

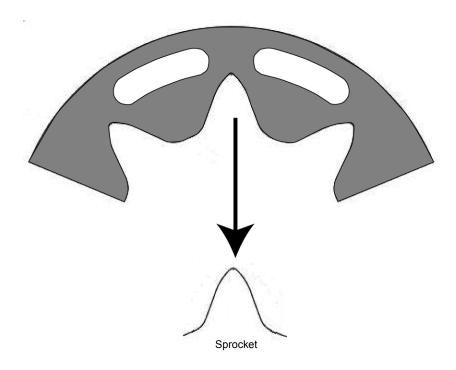


Figure 22: Travel sprocket inspection — 3900W, 4600

THIS PAGE INTENTIONALLY LEFT BLANK.

