Rectangular Swingaway Inspection Procedure

This program was designed to establish a standard field procedure to check and inspect booms for squareness, sweep, twist, camber, flatness or convex / concave conditions.

This procedure pertains to Grove and GMK built booms. Fabricated trapezoidal booms, formed trapezoidal booms, rectangular booms, rectangular swingaways, triangular swingaways and AFrame jibs.

This boom inspection data form will be used to record all measurements taken while performing the inspection.

Note: All calculations will be done by Grove Worldwide

Note: Anytime you are using the gauge blocks, record the thickness of the block used in the appropriate space on the form. Always use gauge blocks large enough to ensure the string does not touch the boom section. **All check dimensions recorded will include the gauge block thickness.**

Note: All measurements are taken from the rear of the section to the front, with the exception of checking for a twist in an A-Frame jib or a swingaway. You must check A-Frame jibs and swingaways by leveling the front of the section and taking the check dimension at the rear. Because of the angle of inclination of the main chords, the front end is narrower than the width at the rear of the section.

Tools Required
- Quantity 1 - 4 Foot Level
- Quantity 1 - Large Square (3’ x 4’)
- Quantity 2 - Small Squares (24” x 16”)
- Quantity 2 - Vise Grip Clamps
- Quantity 1 - 6” scale
- Quantity 1 - 12’ Tape Measure
- Quantity 2 - Gauge Blocks or Rods (Same Thickness)
- Mason String
Definitions

Trapezoidal Boom - A four sided boom with only 2 sides being parallel

Rectangular Boom - A four sided boom having edges, surfaces, or faces that are right angles

GMK Style / Megaform - A six sided boom made from two formed channels. The top half has 90° bends and the bottom half has multiple bends.

A-Frane Jib - A boom extension suspended by cables

Swingaway - A boom extension that is pinned directly to the main boom nose

Sweep - To curve to the right or left, a deviation from being parallel. Larger than the gauge block on one side and smaller then the gauge block on the other side.

Camber - To arch slightly, to curve upward or downward

Squareness - To test for a deviation from a right angle

Twist - To rotate while taking a curving path or direction

Convex - Arched up or bulging out condition

Concave - Arched inward or curving in condition

O. D. Width - Outside dimension measured from outside of left side plate to outside of right side plate

O. D. Height - Outside dimension measured from outside edge of top plate to outside edge of bottom plate

Distortion - To twist out of normal or original shape

Maximum Deviation - The difference between a fixed number (gauge block) and the check dimension

Check Dimension - The actual measurements taken at various places on boom

Strut - Tubing that is welded between main chords of A-Frame jibs

Gauge Blocks - Are blocks, being the same size, from which measurements are being taken

Main Chord - Main support tube that runs the full length of jibs and swingaways

Lacing - Tubing that is welded between the main chords of swingaways
Serial Number and Part Number Locations
On Booms, Swingaways and Jib Booms

Machine component serial numbers and part numbers are required for us to supply repair procedures for major weldments.

Below a list of major components with serial number locations.

Note: Part number is on opposite side of the serial number.

The numbers are steel stamped into the major components in the approximate locations shown.
Rectangular Swingaway Sweep

Chkd. By ___________________ Model ___________________
Date ____________________ Serial # ________________
Distributor ____________________
Record Part Number of Swingaway _________________
Record Serial Number of Swingaway _________________

1. Checking all lacing, one side at a time, place the gauge blocks on the lacing close to the main chord.
2. Pull the string tightly over the blocks.
3. Measure the distance between string and lacing at various points between gauge blocks.
4. Find maximum check dimensions and record on this form.
5. Repeat procedure for all sides.
6. Record thickness of gauge blocks.

Right Side	Left Side	Top	Bottom
a. | | | |
b. | | | |
c. | | | |
d. | | | |
e. | | | |
f. | | | |
g. | | | |
h. | | | |
i. | | | |
j. | | | |
k. | | | |
l. | | | |
m. | | | |
n. | | | |
o. | | | |
p. | | | |

SIDE VIEW

LACING

RECORD DISTORTION IN LACING
Rectangular Swingaway Distortion of Main Chords

1. Place gauge blocks along outside of main chord where lacing is welded to main chord.
2. Pull string tightly across gauge blocks.
3. Measure distance between string and main chord at various points between blocks to find maximum check dimension.
4. Record check dimension on this form.
5. Repeat this procedure for all main chord sections between lacing on all 4 sides.
6. Record thickness of gauge blocks on this form.
Rectangular Swingaway Twist

Chkd. By ___________________ Model ___________________
Date ______________________ Serial # ___________________
Distributor ____________________
Record Part Number of Swingaway ___________________
Record Serial Number of Swingaway ___________________

Record Check Dimension as Twist ________________

1. Place the swingaway with the bottom up.
2. Place a 4’ level across the bottom chords at the front of the swingaway.
3. Once the front is level, take the 4’ level to the rear of the swingaway and place it across the bottom chords.
4. Lift either end of the level one way or the other until the bubble is level.
5. Measure the distance between the level and the bottom chord and record this check dimension as twist on this form.