National Crane
Serie NBT40-1
Manual de servicio
MANUAL DE SERVICIO

Este manual ha sido preparado para y se considera como parte de

Grúas serie NBT40-1

Este manual está dividido en las secciones siguientes:

SECCIÓN 1 INTRODUCCIÓN
SECCIÓN 2 SISTEMA HIDRÁULICO
SECCIÓN 3 SISTEMA ELÉCTRICO
SECCIÓN 4 MANTENIMIENTO DE LA PLUMA
SECCIÓN 5 MALACATE
SECCIÓN 6 GIRO
SECCIÓN 7 ESTABILIZADORES
SECCIÓN 8 LUBRICACIÓN
SECCIÓN 9 INSTALACIÓN DE LA GRÚA
SECCIÓN 10 DIAGRAMAS ESQUEMÁTICOS

El número de serie de la grúa es el único método que el distribuidor o la fábrica tiene para proporcionarle los repuestos correctos y la información de mantenimiento apropiada.

El número de serie de la grúa se indica en la etiqueta del fabricante pegada al bastidor de la grúa. **Siempre proporcione el número de serie de la grúa** al pedir repuestos o informar de problemas de servicio al distribuidor o a la fábrica.

PELIGRO

Los operadores que no hayan recibido capacitación se exponen a sí mismos y a otras personas a la muerte o a lesiones graves. **No utilice esta grúa a menos que:**

- Se le haya instruido sobre cómo manejar en forma segura esta grúa. **National Crane** no se responsabiliza de la calificación del personal.
- Haya leído, entendido y cumplido las recomendaciones de funcionamiento y de seguridad contenidas en los manuales del fabricante de la grúa y las tablas de carga, las normas de trabajo de su empleador y los reglamentos gubernamentales aplicables.
- Esté seguro de que todas las etiquetas de seguridad, protectores y otros dispositivos de seguridad estén en su lugar y en buenas condiciones.
- El manual del operador y la tabla de carga se encuentren en el bolsillo suministrado en la grúa.

© 2019 Grove U.S.L.L.C.
Published 1-21-2018 Control # 655-01
ADVERTENCIA
Propuesta 65 de California
La inhalación de gases de escape del motor diésel lo expondrá a sustancias químicas que, según el Estado de California, causan cáncer, defectos congénitos u otros daños al sistema reproductor.
• Siempre ponga en marcha y haga funcionar el motor en una zona bien ventilada.
• Si está en un área cerrada, ventile los gases de escape hacia el exterior.
• No modifique ni altere el sistema de escape.
• No haga funcionar el motor a ralentí, salvo cuando sea necesario.
Para obtener más información, visite la página www.P65warnings.ca.gov/diesel.
Los bornes, terminales y demás accesorios relacionados con la batería contienen plomo y compuestos de plomo, que son sustancias químicas conocidas en el Estado de California como causantes de cáncer, defectos congénitos y toxicidad reproductiva. Lávese las manos después de trabajar con la batería.

Uso de supresor de chispas en California
El funcionamiento de este equipo puede crear chispas que pueden iniciar incendios alrededor de vegetación seca. Es posible que se requiera el uso de un supresor de chispas. El propietario/operador debe comunicarse con los departamentos de bomberos locales para informarse sobre las leyes o los reglamentos relacionados con los requisitos para la prevención de incendios.

El idioma original de esta publicación es el inglés.
SECCIÓN 1 Introducción

<table>
<thead>
<tr>
<th>Generalidades</th>
<th>1-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Información suplementaria</td>
<td>1-1</td>
</tr>
<tr>
<td>Propietario nuevo</td>
<td>1-2</td>
</tr>
<tr>
<td>Nomenclatura básica</td>
<td>1-2</td>
</tr>
<tr>
<td>Mantenimiento general</td>
<td>1-4</td>
</tr>
<tr>
<td>Limpieza</td>
<td>1-4</td>
</tr>
<tr>
<td>Retiro e instalación</td>
<td>1-4</td>
</tr>
<tr>
<td>Desarmado y armado</td>
<td>1-4</td>
</tr>
<tr>
<td>Montaje de piezas a presión</td>
<td>1-4</td>
</tr>
<tr>
<td>Trabas</td>
<td>1-4</td>
</tr>
<tr>
<td>Suplementos</td>
<td>1-5</td>
</tr>
<tr>
<td>Cojinetes</td>
<td>1-5</td>
</tr>
<tr>
<td>Empaquetaduras</td>
<td>1-5</td>
</tr>
<tr>
<td>Sistemas hidráulicos</td>
<td>1-5</td>
</tr>
<tr>
<td>Eléctrico</td>
<td>1-6</td>
</tr>
<tr>
<td>Falla por fatiga de estructuras soldadas</td>
<td>1-7</td>
</tr>
<tr>
<td>Loctite®</td>
<td>1-7</td>
</tr>
<tr>
<td>Sujetadores y valores de apriete</td>
<td>1-7</td>
</tr>
<tr>
<td>Espárragos soldados</td>
<td>1-22</td>
</tr>
<tr>
<td>Inspección y mantenimiento del cable del malacate</td>
<td>1-23</td>
</tr>
<tr>
<td>Cable del malacate</td>
<td>1-23</td>
</tr>
<tr>
<td>Registros</td>
<td>1-23</td>
</tr>
<tr>
<td>Cable</td>
<td>1-23</td>
</tr>
<tr>
<td>Generalidades</td>
<td>1-23</td>
</tr>
<tr>
<td>Condiciones ambientales</td>
<td>1-23</td>
</tr>
<tr>
<td>Cargas de impactos dinámicos</td>
<td>1-23</td>
</tr>
<tr>
<td>Lubricación</td>
<td>1-23</td>
</tr>
<tr>
<td>Recomendaciones de servicio del cable</td>
<td>1-24</td>
</tr>
<tr>
<td>Inspección de cables</td>
<td>1-24</td>
</tr>
<tr>
<td>Inspección diaria</td>
<td>1-25</td>
</tr>
<tr>
<td>Inspecciones mensuales</td>
<td>1-25</td>
</tr>
<tr>
<td>Inspección anual</td>
<td>1-25</td>
</tr>
<tr>
<td>Cables de extensión y retracción de la pluma</td>
<td>1-25</td>
</tr>
<tr>
<td>Sustitución de cables (todos los cables)</td>
<td>1-26</td>
</tr>
<tr>
<td>Sujeción de cables</td>
<td>1-27</td>
</tr>
</tbody>
</table>

SECCIÓN 2 Sistema hidráulico

<table>
<thead>
<tr>
<th>Mantenimiento</th>
<th>2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalidades</td>
<td>2-4</td>
</tr>
<tr>
<td>Precauciones para el mantenimiento del sistema hidráulico</td>
<td>2-4</td>
</tr>
<tr>
<td>Rotulación de piezas durante el desarmado</td>
<td>2-4</td>
</tr>
<tr>
<td>Precauciones para la soldadura</td>
<td>2-4</td>
</tr>
<tr>
<td>Sustitución de piezas</td>
<td>2-4</td>
</tr>
<tr>
<td>Servicio</td>
<td>2-4</td>
</tr>
<tr>
<td>Recomendaciones para el aceite hidráulico</td>
<td>2-4</td>
</tr>
<tr>
<td>Vaciado y enjuague</td>
<td>2-5</td>
</tr>
<tr>
<td>Eliminación de aire del sistema hidráulico</td>
<td>2-5</td>
</tr>
<tr>
<td>Descripción del sistema</td>
<td>2-6</td>
</tr>
<tr>
<td>Bomba hidráulica</td>
<td>2-6</td>
</tr>
<tr>
<td>Válvula de control de sentido (DCV)</td>
<td>2-6</td>
</tr>
<tr>
<td>Colector de bloqueo de RCL</td>
<td>2-7</td>
</tr>
<tr>
<td>Válvula de control de giro y del aire acondicionado</td>
<td>2-7</td>
</tr>
<tr>
<td>Colectores de control de estabilizadores</td>
<td>2-7</td>
</tr>
<tr>
<td>Depósito hidráulico con filtro</td>
<td>2-7</td>
</tr>
<tr>
<td>Palancas de control remoto hidráulicas (HRC)</td>
<td>2-7</td>
</tr>
</tbody>
</table>
SECCIÓN 3 ... Sistema eléctrico

Descripción ... 3-1
Arranque de la grúa con batería de refuerzo 3-1
Carga .. 3-1

Mantenimiento .. 3-1
Generalidades ... 3-1
Localización de averías generales 3-2
Localización de averías de conectores 3-2
Herramientas para localización de averías 3-2
Localización de averías del adaptador giratorio eléctrico 3-2
Interruptor de encendido 3-2

Descripción del sistema del RCL 3-2
Descripción del sistema RCL y de prevención del contacto entre bloques 3-3

Tablero de fusibles y relés 3-4
Caja de micro relés/fusibles 1 3-6
Caja de micro relés/fusibles 2 3-6
Caja de micro relés/fusibles 3 3-7
Caja de micro relés/fusibles 4 3-8

Módulo del VEC .. 3-9
Solenoides de colector de grúa 3-10
Colecetores de estabilizadores 3-13
Colector de estabilizadores delanteros 3-13
Colector de estabilizadores traseros 3-14
Enfriador de aceite hidráulico .. 3-15
Luz de advertencia del sensor de temperatura del aceite hidráulico. 3-15
Sistema de monitoreo de estabilizadores (OMS) 3-15
Sistema de monitoreo de gatos de estabilizadores (opcional) 3-15

SECCIÓN 4 ... Mantenimiento de la pluma
Pluma de cuatro secciones .. 4-1
Retiro de la pluma ... 4-2
Desarmado de la pluma de cuatro secciones 4-3
Mantenimiento adicional (pluma desarmada) 4-10
Tensión de cable de cuatro secciones .. 4-17
Retención de cable ... 4-18
Sustitución de almohadillas superiores e inferiores de la pluma
de cuatro secciones (armada) .. 4-19
Pluma de cinco secciones .. 4-23
Retiro de la pluma ... 4-24
Desarmado de la pluma de cinco secciones 4-25
Mantenimiento adicional (pluma desarmada) 4-36
Armado de la pluma de cinco secciones ... 4-36
Tensión de cable de cinco secciones ... 4-44
Retención de cable ... 4-46
Sustitución de almohadillas superiores e inferiores de la pluma
de cinco secciones (armada) .. 4-47
Calibración de la pluma .. 4-49
Almohadillas de desgaste laterales inferiores 4-49
Almohadillas de desgaste traseras inferiores 4-50
Cilindro hidráulico ... 4-51
Armado del cilindro ... 4-52
Plumín de la pluma ... 4-53
Ajuste de la escuadra de almacenamiento del plumín 4-53
Servicio y mantenimiento del gato del plumín 4-55

SECCIÓN 5 ... Malacate
Descripción ... 5-1
Mantenimiento ... 5-1
Procedimiento de calentamiento .. 5-1
Retiro del malacate .. 5-2
Instalación del malacate .. 5-2
Sistema de indicador de rotación del malacate (HRI) 5-4
Indicador de rotación del tambor .. 5-5
Retiro ... 5-5
Instalación ... 5-6
Programación del indicador de vueltas mínimas 5-6
Modo de envío (serie A solamente) ... 5-7
Localización de averías .. 5-8
Para la serie “A” ... 5-8
Instrucciones de reposición del disyuntor para la serie “B” 5-8
Reparación del malacate .. 5-8
Desarmado ... 5-8
Armado ... 5-9
Freno ... 5-12
Grupo de planetarios .. 5-13
Motor ... 5-13
Localización de averías .. 5-14
SECCIÓN 6 ... Giro
Descricpción .. 6-1
Teoría de funcionamiento .. 6-1
Mando de giro .. 6-1
Freno de giro .. 6-2
Mecanismo y freno de giro .. 6-4
Retiro e instalación ... 6-4
Instrucciones de desarmado y armado 6-4
Herramientas requeridas .. 6-4
Piezas necesarias para el reacondicionamiento 6-4
Desarmado ... 6-4
Reparación de planetarios de entrada 6-5
Reparación de planetarios de salida 6-5
Reparación de eje .. 6-5
Reparación del conjunto de la caja 6-5
Armado de la unidad .. 6-5
Freno de giro .. 6-6
Desarmado ... 6-7
Armado ... 6-8
Cojínete de giro ... 6-9
Descripción .. 6-9
Mantenimiento ... 6-9
Generalidades ... 6-9
Apriete de pernos del cojinete de giro 6-9
Generalidades .. 6-9
Pernos del cojinete de giro 6-10
Herramientas requeridas ... 6-10
Espacio libre de cojinete .. 6-12
Sustitución de cojinetes .. 6-14
Retiro ... 6-14
Instalación .. 6-14
Ajuste del potenciómetro de giro 6-15
Calibración de sensor de giro 6-16
Pruebas .. 6-17
Bloqueo de giro ... 6-17
Retiro ... 6-17
Instalación .. 6-17
Bloqueo de la estructura ... 6-20
Retiro ... 6-20
Instalación .. 6-20

SECCIÓN 7 ... Estabilizadores
Descripción .. 7-1
Conjunto de viga de estabilizadores 7-1
Retiro ... 7-4
Armado ... 7-5
Tensión de cables ... 7-6
Calibración del estabilizador 7-6
Almohadillas laterales .. 7-7
Almohadillas superiores e inferiores 7-8
Sistema de monitoreo de estabilizadores (OMS) 7-9
Potenciómetro en serie .. 7-9
Sistema de monitoreo de gatos de estabilizadores (opcional). 7-10
SECCIÓN 8 ... Lubricación
 Generalidades .. 8-1
 Protección ambiental .. 8-1
 Lubricantes .. 8-1
 Condiciones árticas inferiores a −9°C (15°F) 8-2
 Grasa para chasis .. 8-2
 Grasa para temperaturas bajas 8-2
 Lubricante universal para engranajes de presión extrema (EPGL) 8-2
 Lubricante para engranajes desapados 8-2
 Anticongelante/refrigerante (para el calefactor de cabina) 8-2
 Aditivos antidesgaste ... 8-2
 Aceite hidráulico ... 8-2
 Aceite hidráulico estándar .. 8-3
 Inspección del aceite hidráulico 8-3
 Lubricación .. 8-3
 Lubricación de poleas de cables internos 8-8
 Lubricación de almohadillas de desgaste laterales e inferiores de la pluma 8-8
 Lubricación de la almohadilla de desgaste superior de la pluma 8-8
 Lubricación de viga de estabilizador 8-8
 Aceite de freno del malacate .. 8-9
 Aceite del mecanismo de malacate 8-9
 Aceite de mecanismo y freno de giro 8-10
 Nivel de aceite hidráulico en depósito 8-10
 Aire acondicionado .. 8-11
 Lubricación del cable ... 8-11
 Inhibidor de oxidación Carwell® 8-12
 Protección de las grúas contra la oxidación 8-12
 Procedimientos de limpieza 8-12
 Inspección y reparación ... 8-13
 Aplicación .. 8-13
 Áreas de aplicación ... 8-14

SECCIÓN 9 ... Instalación de la grúa
 Generalidades .. 9-1
 Requisitos mínimos del camión 9-2
 Configuraciones de montaje .. 9-4
 Configuración de la NBT36-1 — Caja de torsión estándar y pluma de 103 pies 9-4
 Configuración de la NBT36-1 — Caja de torsión estándar y pluma de 127 pies 9-5
 Configuración de la NBT40-1 — Caja de torsión estándar y pluma de 103 pies 9-6
 Configuración de la NBT40-1 — Caja de torsión estándar y pluma de 127 pies 9-7
 Configuración de la NBT40-1 — Caja de torsión estándar y pluma de 142 pies 9-8
 Configuración de la NBT40-1 — Caja de torsión extendida y pluma de 127 pies 9-9
 Configuración de la NBT40-1 — Caja de torsión extendida y pluma de 142 pies 9-10
 Configuración de la NBT45-1 — Caja de torsión extendida y pluma de 127 pies 9-11
 Configuración de la NBT45-1 — Caja de torsión extendida y pluma de 142 pies 9-12
 Configuración de la NBT45-1 — Caja de torsión extendida y pluma de 161 pies 9-13
 Requisitos de TDF .. 9-14
 Potencia .. 9-14
 Montaje directo a la TDF ... 9-14
 Relación de TDF .. 9-14
 Rotación de la bomba ... 9-14
 Resistencia de chasis del camión 9-15
 Tablas de módulo de sección 9-16
 Preparación del camión .. 9-21
 Precauciones para la soldadura 9-21
Colocación de la grúa en el camión ... 9-21
TDF, Bomba y Depósito .. 9-21
Refuerzo de la extensión del chasis posterior .. 9-22
Montaje de la grúa .. 9-26
Conexión eléctrica con el camión .. 9-30
Conexión de bomba hidráulica ... 9-32
Calibración del RCL .. 9-34
Prueba de estabilidad ... 9-34
Contrapeso ... 9-37
Retiro del contrapesan o .. 9-38
Instalación del contrapesan o ... 9-38
Especificaciones ... 9-40
TDF ... 9-40
Sistema hidráulico ... 9-40
Depósito hidráulico ... 9-40
Válvula multiplicadora hidráulica - opcional ... 9-40
Acondicionador de aire ... 9-40
Sistema de malacate .. 9-41
Velocidades de funcionamiento de equipos ... 9-41
Contrapesan o ... 9-42
Generalidades ... 9-42
Peso de la pluma - incluye malacate/cable ... 9-42
Diagrama de dimensiones ... 9-43
Caja de torsión extendida de la NBT40-1 y NBT45-1 9-43
Caja de torsión estándar de la NBT40-1 y NBT45-1 ... 9-44
Caja de torsión extendida de la NBT36-1 ... 9-45

SECCIÓN 10 .. Diagramas esquemáticos
SECCIÓN 1
INTRODUCCIÓN

CONTENIDO DE LA SECCIÓN

Generalidades	1-1
Información suplementaria	1-1
Propietario nuevo	1-2
Nomenclatura básica	1-2
Mantenimiento general	1-4
Limpieza	1-4
Retiro e instalación	1-4
Desarmado y armado	1-4
Montaje de piezas a presión	1-4
Trabas	1-4
Suplementos	1-5
Cojinetes	1-5
Empaquetaduras	1-5
Sistemas hidráulicos	1-5
Eléctrico	1-6
Falla por fatiga de estructuras soldadas	1-7
Loctite®	1-7
Sujetadores y valores de apriete	1-7
Espárragos soldados	1-22
Inspección y mantenimiento del cable del malacate	1-23
Cable del malacate	1-23
Registros	1-23
Cable	1-23
Generalidades	1-23
Condiciones ambientales	1-23
Cargas de impactos dinámicos	1-23
Lubricación	1-23
Recomendaciones de servicio del cable	1-24
Inspección de cables	1-24
Inspección diaria	1-25
Inspecciones mensuales	1-25
Inspección anual	1-25
Cables de extensión y retracción de la pluma	1-25
Sustitución de cables (todos los cables)	1-26
Sujección de cables	1-27

GENERALIDADES

Este manual se ha compilado para ayudarle a manejar y a dar mantenimiento correctamente a su grúa National Crane serie NBT40-1 (vea la Figura 1-1). La serie NBT40-1 incluye los modelos NBT36-1, NBT40-1 y NBT45-1.

Antes de poner la grúa en servicio, todos los operadores y personas que trabajen alrededor de la grúa deberán leer y comprender completamente el contenido del manual del operador. Antes de propulsar un vehículo equipado con una grúa, lea y átégase a la información relacionada con el transporte del vehículo.

Guarde este manual con la máquina para que pueda ser utilizado por el resto del personal.

La información de este manual no reemplaza las regulaciones federales, estatales o locales, los códigos de seguridad ni los requerimientos de seguros. Para información detallada con respecto al uso y mantenimiento del sistema RCL instalado en el equipo, consulte el manual del fabricante incluido con el equipo. Los fabricantes de los limitadores de la capacidad nominal pueden referirse a ellos en sus manuales como un indicador del momento de carga (LMI) o un sistema de alarma de capacidad hidráulica (HCAS); National Crane se refiere a estos sistemas como un limitador de capacidad nominal (RCL) en sus manuales del operador y de servicio.

La SERIE NBT40-1 se ha diseñado para brindar un rendimiento máximo con mantenimiento mínimo. Con el cuidado adecuado, se puede esperar años de servicio sin problemas.

National Crane y nuestra red de distribuidores desean asegurarse de que usted está satisfecho con nuestros productos y asistencia al cliente. Su distribuidor local es el mejor equipado y más conocedor para ayudarle con información sobre repuestos, servicio y cuestiones relacionadas con la garantía. Cuenta con las instalaciones, los repuestos, el personal capacitado en la fábrica y la información necesarios para ayudarlo oportunamente. Le sugerimos que se comunique primero con ellos para solicitar asistencia. Si considera que necesita asistencia de la fábrica, pregunte a la administración de servicio del distribuidor para coordinar el contacto en nombre suyo.

Información suplementaria

Se incluye información suplementaria en cuanto a la seguridad y el funcionamiento, las especificaciones, el servicio y mantenimiento, la instalación y las piezas para opciones tales como controles remotos, barrenas, configuraciones de controles variables, plataformas, tenazas, etc. en manuales separados. En este manual estándar se agrega la mayoría del contenido opcional, como la plataforma y los controles remotos. El sistema RCL y el multiplicador de presión hidráulica opcional se incluyen como manuales separados.

Si surgen dudas en cuanto a su producto National Crane o a esta publicación, por favor consulte al distribuidor más cercano de National Crane para obtener la información más...
reciente. Además, el distribuidor de National Crane cuenta con las herramientas adecuadas, repuestos y personal de servicio capacitado para darle mantenimiento y servicio adecuados a sus equipos.

Al comprar un equipo nuevo se suministra un disco compacto o una memoria USB con un video de seguridad que incluye secciones sobre el funcionamiento, servicio y seguridad para los operadores y propietarios de las grúas National Crane. Se pueden obtener copias adicionales a través del distribuidor local.

Propietario nuevo

Si usted es el nuevo propietario de una grúa National, regístrese con Manitowoc Crane Care de manera que podamos contactarlo si surge la necesidad. Vaya a https://www.Manitowoccranes.com/home/Parts_Services/ServiceAndSupport/ChangeOfOwnershipForm

Nomenclatura básica

La nomenclatura utilizada para describir las piezas de una grúa National Crane se describe en la Figura 1-2. Esta nomenclatura se usa a través de todo este manual.
FIGURA 1-2

<table>
<thead>
<tr>
<th>Art.</th>
<th>Componente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cabina de la grúa</td>
</tr>
<tr>
<td>2</td>
<td>Consola de cabina de grúa</td>
</tr>
<tr>
<td>3</td>
<td>Asiento del operador</td>
</tr>
<tr>
<td>4</td>
<td>Pluma</td>
</tr>
<tr>
<td>5</td>
<td>Punta de pluma</td>
</tr>
<tr>
<td>6</td>
<td>Apoyo de la pluma</td>
</tr>
<tr>
<td>7</td>
<td>Cilindro de elevación</td>
</tr>
<tr>
<td>8</td>
<td>Cable del malacate</td>
</tr>
<tr>
<td>9</td>
<td>Malacate (9a - auxiliar, 9b - principal)</td>
</tr>
<tr>
<td>10</td>
<td>Polea</td>
</tr>
<tr>
<td>11</td>
<td>Viga del estabilizador</td>
</tr>
<tr>
<td>12</td>
<td>Gato de estabilizadores</td>
</tr>
<tr>
<td>13</td>
<td>Flotador de estabilizador</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Art.</th>
<th>Componente</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Caja de estabilizador</td>
</tr>
<tr>
<td>15</td>
<td>Indicador de ángulo de la pluma</td>
</tr>
<tr>
<td>16</td>
<td>Peso de línea de tensión, aparejo de gancho</td>
</tr>
<tr>
<td>17</td>
<td>Plumín</td>
</tr>
<tr>
<td>18</td>
<td>Torreta</td>
</tr>
<tr>
<td>19</td>
<td>Estabilizador delantero sencillo (SFO), gato estabilizador delantero</td>
</tr>
<tr>
<td>20</td>
<td>Depósito hidráulico</td>
</tr>
<tr>
<td>21</td>
<td>Bomba hidráulica (no se ilustra)</td>
</tr>
<tr>
<td>22</td>
<td>Unidad de control hidráulico remota (HRC)</td>
</tr>
<tr>
<td>23</td>
<td>Chasis del camión</td>
</tr>
<tr>
<td>24</td>
<td>Plataforma del camión</td>
</tr>
<tr>
<td>25</td>
<td>Bastidor de caja de torsión</td>
</tr>
</tbody>
</table>
MANTENIMIENTO GENERAL
Las sugerencias dadas a continuación son útiles para analizar y corregir problemas:
• Determine la naturaleza del problema
• Haga una lista de las causas posibles
• Prepare las revisiones del caso
• Efectúe las revisiones siguiendo un orden lógico para determinar la causa
• Evalúe la vida útil restante de los componentes en comparación con el costo de las piezas y mano de obra que se requerirían para reemplazarlos
• Lleve a cabo las reparaciones que sean necesarias
• Pruebe el equipo para asegurarse de que se haya resuelto el problema

NOTA: La seguridad es la consideración número uno cuando se trabaja alrededor de máquinas. La seguridad es cuestión de entender a fondo la tarea a llevarse a cabo y de aplicar el sentido común. No es solo cuestión de reglas y limitaciones. Manténgase alejado de todas las piezas móviles.

Limpieza
La limpieza es importante para prolongar la vida útil de la máquina. Mantenga la tierra fuera de las piezas móviles y compartimientos. Mantenga los filtros y sellos limpios. Toda vez que se desconecten líneas de aceite hidráulico, combustible o lubricante, o líneas de aire, limpie la zona circundante, al igual que el punto de desconexión. Tape cada línea o abertura para evitar la entrada de materias extrañas. Limpie e inspeccione todas las piezas. Compruebe que todos los conductos y agujeros estén abiertos. Cubra todas las piezas para mantenerlas limpias. Pruebe el equipo para asegurarse de que se haya resuelto el problema.

PRECAUCIÓN
La capacidad de los pernos de argolla disminuye según el ángulo entre los miembros de soporte y el objeto se reduce a menos de 90°. Los pernos de argolla y escuadras nunca deberán tener deformaciones y solo deberán soportar esfuerzos en el sentido de tracción.

Sí es difícil retirar alguna pieza, verifique que se le hayan retirado todas las tuercas y pernos y que no haya interferencias con una pieza adyacente.

Desarmado y armado
Complete en el orden indicado cada paso del procedimiento de desarmado o de armado de un componente. No arme parcialmente una pieza para luego empezar a armar alguna otra pieza. Efectúe todos los ajustes que se recomiendan. Siempre revise la tarea después de haberla terminado para comprobar que no se haya pasado por alto algún aspecto de la misma. Vuelva a revisar los diversos ajustes haciendo funcionar la máquina antes de volver a ponerla en servicio.

Montaje de piezas a presión
Cuando se monta una pieza a presión en otra, aplique una pasta antiagarrotamiento o compuesto a base de bisulfuro de molibdeno para lubricar las superficies adosadas. Arme las piezas ahusadas sin lubricarlas. Antes de armar las piezas que tengan estrías ahusadas, compruebe que las estrías estén limpias, secas y libres de rebabas. Una las piezas a mano para engranar las estrías antes de aplicarles presión. Las piezas que encajan entre sí con estrías ahusadas siempre quedan sumamente ajustadas. Si no están ajustadas, inspeccione las estrías ahusadas y boté la pieza si las estrías están desgastadas.

Trabas
Se usan arandelas de seguridad, trabas metálicas planas o pasadores hendidos para tratar las tuercas y pernos. En las trabas metálicas planas, doble un extremo de la traba alrededor del borde de la pieza y el otro extremo contra una superficie plana de la tuerca o de la cabeza del perno. Siempre coloque dispositivos de traba nuevos en los componentes que tienen piezas móviles.

Coloque una arandela plana de acero entre las cajas de aluminio y las arandelas de seguridad.
Suplementos
Cuando se retiren suplementos, átelos juntos e identifique la posición en la cual se instalan. Mantenga los suplementos limpios y en posición plana hasta volverlos a instalar.

Cojinetes

Cojinetes antifricción
Cuando se retira un cojinete antifricción, cúbralo para impedir que le entre tierra y materias abrasivas. Lave los cojinetes en una solución limpiadora no inflamable y permita que se sequen. El cojinete puede secarse con aire comprimido, pero no permita que el cojinete gire. Bote los cojinetes si sus pistas exteriores o sus bolas o rodillos tienen picaduras, acanaladuras o quemaduras. Si el cojinete puede ponerse en servicio, cúbralo con aceite y envuélvalo con papel de cera limpio. No desenvuelva los cojinetes nuevos hasta el momento de instalarlos. La vida útil de un cojinete antifricción se acortará si no se lo lubrica correctamente. La tierra podría causar el agarrotamiento de un cojinete antifricción, lo cual puede hacer que el eje gire contra la pista interior, o que la pista exterior gire dentro de la jaula del cojinete.

Cojinetes de dos hileras de rodillos ahusados
Los cojinetes de dos hileras de rodillos ahusados se instalan a precisión durante la fabricación y sus componentes no pueden intercambiarse. Las pistas exteriores, conos y espaciadores generalmente han sido grabados con un mismo número de serie y letras identificadoras. Si no se hallan las letras identificadoras, una los componentes con alambres para asegurarse de que sean instalados correctamente. Los cojinetes reutilizables deben instalarse en sus posiciones originales.

Calentamiento de cojinetes
Los cojinetes que requieren expansión para instalarlos deben calentarse en un baño de aceite a una temperatura no mayor que 121°C (250°F). Cuando se calienta más de una pieza para ayudar en la instalación, dejar que se enfrien para después montarlas a presión nuevamente. Las piezas frecuentemente se separan al enfriarse y contraerse.

Instalación
Lubrique los cojinetes nuevos o usados antes de instalarlos. Los cojinetes que requieren precarga deberán tener una capa de aceite en todo su conjunto para poder obtener una precarga precisa. Al instalar un cojinete, espaciador o arandela contra un reborde en un eje, verifique que el lado biseado quede orientado hacia el reborde.

Cuando se montan cojinetes a presión en un retenedor o cavidad, apliquele presión de modo uniforme a la pista exterior. Si el cojinete se monta a presión en el eje, apliquele presión uniforme a la pista interior.

Precarga
La precarga es una carga inicial que se le aplica al cojinete al armarlo. Consulte las instrucciones de desarmado y de armado para determinar si el cojinete requiere precarga.
Tenga cuidado al precargar cojinetes que requieren juego axial. De lo contrario, se puede causar la falla del cojinete.

Cojinetes de manguito
No instale los cojinetes de manguito usando un martillo. Utilice una prensa y asegúrese de aplicar la presión directamente en línea con la cavidad. De ser necesario golpear un cojinete para impulsarlo, utilice un impulsor o una barra con un extremo liso y plano. Si un cojinete de manguito tiene un agujero de aceite, alinéelo con el agujero de aceite de la pieza adosada.

Empaquetaduras
Verifique que los agujeros de las empaquetaduras correspondan con los conductos de lubricante de las piezas adosadas. Si resulta necesario fabricar las empaquetaduras, seleccione un material de tipo y grosor apropiados para fabricarlas. Asegúrese de cortar los agujeros en los puntos correctos. Las empaquetaduras ciegas pueden causar daños graves.

Sistemas hidráulicos

PELIGRO
El aceite hidráulico a presión puede causar lesiones graves. Alivie la presión del sistema hidráulico antes de soltar los adaptadores.

Inspección visual
Efectúe una inspección visual diariamente de todos los componentes hidráulicos, revisando si hacen falta abrazaderas de manguera, escudos, protectores, o si hay acumulaciones de tierra y fugas. Efectúe una inspección mensualmente o cada 250 horas de los componentes mencionados en el procedimiento dado a continuación.

Válvulas y colectores
Revise las válvulas y colectores en busca de fugas en lumberas o secciones.

Mangueras y adaptadores
Inspeccione todas las mangueras y adaptadores en busca de lo siguiente:
• Mangueras cortadas, dobladas, aplastadas o retorcidas.
• Mangueras o adaptadores con fugas
• Mangueras agrietadas, abultadas o carbonizadas por el calor
Adaptadores dañados o corroídos
- Desplazamiento de adaptadores en mangueras

Si alguna de las condiciones anteriores existe, evalúe y reemplace las piezas que sean necesarias.

Las condiciones climáticas en las cuales se usa la grúa afectan la vida útil de los componentes hidráulicos. Las zonas climáticas se definen en la tabla en la página 1-7. Se recomienda sustituir las mangueras de la manera siguiente:
- Zonas climáticas A y B con temperaturas elevadas y ciclos de trabajo severos, después de 4000 a 5000 horas de servicio
- Zona climática C, después de 8000 horas de servicio
- Zonas climáticas D y E, después de 4000 a 5000 horas de servicio

Limpieza

La entrada de contaminantes en un sistema hidráulico afecta su funcionamiento y causa daños graves a los componentes del sistema.

Limpieza del sistema

Al retirar los componentes de un sistema hidráulico, cubra todas las aberturas tanto del componente como de la grúa. Si se descubre evidencia de partículas extrañas en el sistema hidráulico, lave el sistema.

Desarme y arme los componentes hidráulicos sobre una superficie limpia.

Limpie todas las piezas metálicas con un líquido limpiador no inflamable. Después lubrique todos los componentes para ayudar al armado.

Elementos selladores

Inspeccione todos los elementos selladores (anillos “O”, empaquetaduras, etc.) al desarman y armar los componentes del sistema hidráulico. Se recomienda instalar elementos nuevos.

Líneas hidráulicas

Cuando se desconecten mangueras, marque cada una de ellas para asegurarse de identificarlas correctamente durante el armado.

Al instalar tubos metálicos, apriete todos los pernos con los dedos. Después, apriete los pernos en el orden siguiente: en el extremo rígido, el extremo ajustable y las escuadras de montaje. Después de haber instalado los tubos, instale las mangueras. Conecte ambos extremos de la manguera apretando sus pernos con los dedos. Coloque la manguera de modo que no roce contra la máquina ni contra otra manguera y que tenga un mínimo de dobleces y retorcendas. Apriete los pernos de ambos acoplamientos.

Debido a los métodos usados para fabricarlas, todas las mangueras hidráulicas tienen una curvatura natural. Vuelva a instalar la manguera de modo que todos sus dobleces queden en el mismo sentido de esta curvatura.

Eléctrico

Baterías

Limpie las baterías con una solución de bicarbonato de sosa y agua. Enjuague con agua limpia y seque. Limpie los bornes de batería con papel de lija fino y cúbralos con grasa dieléctrica. No utilice grasa no dieléctrica.

Quite las baterías de la máquina si esta no será utilizada por un tiempo prolongado. Almacene las baterías en un lugar cálido y seco, preferentemente sobre repisas de madera. Nunca las almacene sobre una superficie de hormigón. Se les debe introducir una carga pequeña de modo periódico para mantener la gravedad específica al nivel recomendado.

PRECAUCIÓN

Desconecte las baterías antes de trabajar en el sistema eléctrico.

Cuando se desconecten alambres, marque cada uno de ellos para asegurarse de identificarlos correctamente durante el nuevo armado.

Conectores, arneses y alambres

Inspeccione visualmente todos los arneses, cables y conectores eléctricos mensualmente o cada 250 horas en busca de lo siguiente:
- Aislamiento dañado, cortado, abultado o agrietado
- Alambres desnudos expuestos
- Alambres y cables retorcidos o aplastados
- Agrietamiento o corrosión de conectores, bornes de batería y conexiones a tierra

Si alguna de las condiciones anteriores existe, evalúe y reemplace las piezas que sean necesarias.

Las condiciones climáticas en las cuales se usa la grúa afectan la vida útil de los componentes eléctricos. Las zonas climáticas se definen en la tabla en la página 1-7. Se recomienda sustituir los arneses y cables de la manera siguiente:
- Zonas climáticas A y B con temperaturas elevadas y ciclos de trabajo severos, después de 8000 horas de servicio
- Zona climática C, después de 10 000 horas de servicio
- Zonas climáticas D y E, después de 10 000 horas de servicio
- Condiciones con agua salada, después de 8000 horas de servicio
Falla por fatiga de estructuras soldadas
Las estructuras soldadas que soportan esfuerzos altos están sujetas a roturas (fatiga) cuando se exponen a esfuerzos de intensidad variada causados por retorceduras, choques, dobleces y sobrecargas. Inspeccione el equipo periódicamente en busca de fatiga de las soldaduras. La frecuencia de las inspecciones depende de la edad del equipo, de la severidad de su uso y de la experiencia de los operadores y del personal de mantenimiento. Las zonas siguientes son conocidas como de esfuerzos elevados y deben inspeccionarse como parte de un programa de mantenimiento preventivo:

- Puntos de fijación del cilindro hidráulico y del pivote de la pluma
- Zapatas, vigas, cajas y estructuras de fijación de los estabilizadores
- En el bastidor en la zona de las placas de refuerzo y las traviesas
- Conexión del cojinete de la plataforma de giro (en donde el cojinete se emperna a la torreta de la grúa)
- Estructuras de soporte del contrapeso (donde corresponda)
- Conexiones de extremos de cilindros hidráulicos

Lo anterior se proporciona solo como una guía, y su plan de inspecciones no deberá limitarse a las zonas mencionadas. Es buena práctica conducir una inspección visual de todos los miembros soldados.

Loctite®

Las pastas adhesivas tipo Loctite contienen sustancias químicas que pueden ser nocivas si se las utiliza incorrectamente. Lea y siga las instrucciones dadas en el envase.

Siga las instrucciones dadas en el envase de Loctite. Hay tipos diferentes de pasta Loctite para usos diferentes. Los tipos siguientes de pasta adhesiva Loctite se ofrecen a través del Departamento de repuestos de su distribuidor local de National Crane.

Aplicación de pasta Loctite de resistencia mediana

NOTA: El fijador puede volverse a utilizar; la pasta adhesiva puede volverse a aplicar sobre los residuos de pasta adhesiva curada.

El procedimiento siguiente describe el método adecuado de aplicación y curado de pasta adhesiva/selladora Loctite de resistencia mediana (Loctite N.° 243). Limpie la tierra y el aceite de las superficies roscadas de los conectores tanto macho como hembra.

Aplicación de pasta adhesiva/selladora

1. Aplique un cordón de varias roscas de ancho en la zona aproximada de contacto de las roscas (vea la Figura 1-3).
2. En un caso de agujero ciego, aplique varias gotas de pasta adhesiva al fondo del agujero, de modo que la pasta adhesiva se fuerce hacia arriba al instalar el perno.
3. Después de la instalación, la fijación se producirá en menos de cinco (5) minutos. Para adquirir la resistencia máxima de fijación se requieren 24 horas.

Sujetadores y valores de apriete
Utilice pernos del largo correcto. Un perno excesivamente largo puede tocar fondo antes de que su cabeza quede ajustada contra la pieza sujetada. Si un perno es demasiado corto, puede no haber suficientes roscas engranadas para sujetar la pieza de modo seguro. Las roscas pueden
dañarse. Inspeccionelas y reemplace los sujetadores, según sea necesario.

Los valores de apriete deberán corresponder con el tipo de pernos, espárragos y tuercas que se utilicen.

National Crane proporciona tablas de valores de apriete como referencia para los trabajos de mantenimiento.

El uso de valores correctos de apriete es extremadamente importante. El apriete incorrecto puede perjudicar grave-
mente el rendimiento y la confiabilidad.

Siempre es necesario identificar el grado del sujetador. Cuando un perno lleva una marca de alta resistencia (gra-
dos 5, 8, etc.), el mecánico debería ser consciente de que está trabajando con un componente que soporta esfuerzos elevados y que es necesario apretar el sujetador al valor apropiado.

NOTA: En algunas situaciones especiales se requiere de cierta variación de los valores de apriete normales. Siempre se deben consultar los procedimientos de reacondicionamiento del componente para las recomendaciones del caso.

 Preste atención especial a la presencia de lubricantes, chapado y otros factores que pudieran hacer necesario usar un valor de apriete diferente del normal.

Se prohíbe el uso de lubricantes en piezas recubiertas con zinc ya que esto cambiará el valor de apriete requerido.

Si se han excedido los valores máximos de apriete recomendados, se debe sustituir el sujetador.

No se pueden reutilizar los pernos y tuercas de grado 8 o clase 10.9 previamente instalados.

Al consultar las tablas de valores de apriete correspondien-
tes, utilice valores tan cercanos como sea posible a los indicados para compensar la tolerancia de calibración de la llave.

Llaves torsiométricas

Las llaves de vástagos flexibles, aunque estén provistas de una función de valor predeterminado, deben tirarse en sen-
tido perpendicular y la fuerza debe aplicarse en el punto cen-
tral del mango. Las mediciones de valores de fuerza deben tomarse cuando la herramienta está en movimiento. Las herramientas de mango rígido, con dispositivos limitadores de apriete que pueden ajustarse al valor deseado, eliminan la necesidad de cuadrantes y proporcionan aprietes más confiables y menos variables.

NOTA: Cuando se utilizan multiplicadores de par y/o herramientas especiales para alcanzar puntos de acceso difícil, verifique que las indicaciones de par de apriete se hayan calculado con precisión.

Las llaves torsiométricas son instrumentos de precisión y deben manipularse con cuidado. Para asegurar la precisión, es necesario calibrarlas periódicamente. Si existe la posibili-
dad de que una llave torsiométrica haya sido sometida a esfuerzos excesivos o se haya dañado, póngala fuera de servicio de inmediato hasta calibrarla. Cuando se usa una llave torsiométrica, todo movimiento irregular o súbito puede causar la aplicación de un par de apriete excesivo o inco-
recto. Siempre mueva la llave lentamente y deténgase al obtener el valor predeterminado.

Cuando se usan llaves de tuercas escalonadas, los valores de apriete calculados son válidos solamente cuando se cumplen las condiciones siguientes:

- Las llaves torsiométricas deben ser las especificadas y las fuerzas deben aplicarse en la empuñadura de la manija. Si se usan extensiones en la manija, se variará el par de apriete aplicado al perno.

- Todas las manijas deberán quedar paralelas respecto a la llave escalonada durante el apriete final. Las barras de reacción de las llaves multiplica

- Las manijas de la barra multiplicadora deben estar apo-
yadas o soportadas en el 1/4 exterior de la longitud de la manija, de lo contrario el apriete será significativamente mayor o menor que el deseado.

Para convertir los valores dados en libras-pie (lb pie) a new-
tons-metro (Nm), multipliquel el valor en libras-pie por 1.3558.

Para convertir los valores dados en libras-pulgada (lb pulg) a newtons-metro (Nm), multiplique el valor en libras-pulgada por 0.11298.

Valores de apriete

Las tablas siguientes listan los valores de apriete para los sujetadores métricos y estándar ASME. Las tablas listan los valores para sujetadores con recubrimiento de zinc, sin acaba-
bado (negro) y de acero inoxidable grados 5 y 8.
Perno de cabeza hexagonal grado 1 y grado 2 SAE

Perno de cabeza hexagonal grado 5 SAE

Perno de cabeza hexagonal grado 7 SAE

Perno de cabeza hexagonal grado 8 SAE

Perno de cabeza hueca

Perno de reborde con cabeza hueca

Cabeza embridada y dentellada

FIGURA 1-4
Tabla 1-2. Serie de pulgadas con roscas gruesas (UNC) — Con recubrimiento de zinc

<table>
<thead>
<tr>
<th>Designación de serie, roscas por pulgadas y tamaño nominal</th>
<th>Grado</th>
<th>Par de apriete (pie/lb)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
<td>Nominal</td>
<td>Mínimo</td>
<td></td>
</tr>
<tr>
<td>1/4-20 UNC</td>
<td>5</td>
<td>6.6</td>
<td>6.4</td>
<td>6.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9.3</td>
<td>9.0</td>
<td>8.8</td>
<td></td>
</tr>
<tr>
<td>5/16-18 UNC</td>
<td>5</td>
<td>13.5</td>
<td>13.2</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>19.1</td>
<td>18.6</td>
<td>18.1</td>
<td></td>
</tr>
<tr>
<td>3/8-16 UNC</td>
<td>5</td>
<td>24.0</td>
<td>23.4</td>
<td>22.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>33.9</td>
<td>33.1</td>
<td>32.2</td>
<td></td>
</tr>
<tr>
<td>7/16-14 UNC</td>
<td>5</td>
<td>38.4</td>
<td>37.4</td>
<td>36.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>54.3</td>
<td>52.9</td>
<td>51.5</td>
<td></td>
</tr>
<tr>
<td>1/2-13 UNC</td>
<td>5</td>
<td>58.6</td>
<td>57.1</td>
<td>55.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>82.8</td>
<td>80.7</td>
<td>78.6</td>
<td></td>
</tr>
<tr>
<td>9/16-12 UNC</td>
<td>5</td>
<td>84.5</td>
<td>82.4</td>
<td>80.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>119.4</td>
<td>116.5</td>
<td>113.5</td>
<td></td>
</tr>
<tr>
<td>5/8-11 UNC</td>
<td>5</td>
<td>116.6</td>
<td>113.7</td>
<td>110.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>164.8</td>
<td>160.7</td>
<td>156.6</td>
<td></td>
</tr>
<tr>
<td>3/4-10 UNC</td>
<td>5</td>
<td>206.8</td>
<td>201.7</td>
<td>196.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>292.3</td>
<td>284.9</td>
<td>277.6</td>
<td></td>
</tr>
<tr>
<td>7/8-9 UNC</td>
<td>5</td>
<td>333.8</td>
<td>325.4</td>
<td>317.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>471.6</td>
<td>459.8</td>
<td>448.0</td>
<td></td>
</tr>
<tr>
<td>1-8 UNC</td>
<td>5</td>
<td>500.3</td>
<td>487.8</td>
<td>475.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>707.0</td>
<td>699.3</td>
<td>671.6</td>
<td></td>
</tr>
<tr>
<td>1 1/8-7 UNC</td>
<td>5</td>
<td>624.0</td>
<td>608.4</td>
<td>592.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1001.4</td>
<td>976.4</td>
<td>951.4</td>
<td></td>
</tr>
<tr>
<td>1 1/4-7 UNC</td>
<td>5</td>
<td>880.5</td>
<td>858.5</td>
<td>836.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1413.1</td>
<td>1377.8</td>
<td>1342.5</td>
<td></td>
</tr>
<tr>
<td>1 3/8-6 UNC</td>
<td>5</td>
<td>1154.5</td>
<td>1125.6</td>
<td>1096.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1852.8</td>
<td>1806.5</td>
<td>1760.2</td>
<td></td>
</tr>
<tr>
<td>1 1/2-6 UNC</td>
<td>5</td>
<td>1532.0</td>
<td>1493.7</td>
<td>1455.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2458.8</td>
<td>2397.3</td>
<td>2335.8</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 1-3. Serie de pulgadas con roscas finas (UNF) — Con recubrimiento de zinc

<table>
<thead>
<tr>
<th>Designación de serie, roscas por pulgadas y tamaño nominal</th>
<th>Grado</th>
<th>Par de apriete (pie/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
</tr>
<tr>
<td>1/4-28 UNF</td>
<td>5</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>10.6</td>
</tr>
<tr>
<td>5/16-24 UNF</td>
<td>5</td>
<td>15.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>21.1</td>
</tr>
<tr>
<td>3/8-24 UNF</td>
<td>5</td>
<td>27.2</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>38.4</td>
</tr>
<tr>
<td>7/16-20 UNF</td>
<td>5</td>
<td>42.9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>60.6</td>
</tr>
<tr>
<td>1/2-20 UNF</td>
<td>5</td>
<td>66.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>93.3</td>
</tr>
<tr>
<td>9/16-18 UNF</td>
<td>5</td>
<td>94.3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>133.2</td>
</tr>
<tr>
<td>5/8-18 UNF</td>
<td>5</td>
<td>132.1</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>186.7</td>
</tr>
<tr>
<td>3/4-16 UNF</td>
<td>5</td>
<td>231.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>326.4</td>
</tr>
<tr>
<td>7/8-14 UNF</td>
<td>5</td>
<td>367.7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>519.6</td>
</tr>
<tr>
<td>1-12 UNF</td>
<td>5</td>
<td>547.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>773.5</td>
</tr>
<tr>
<td>1 1/8-12 UNF</td>
<td>5</td>
<td>700.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1123.5</td>
</tr>
<tr>
<td>1 1/4-12 UNF</td>
<td>5</td>
<td>975.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1564.8</td>
</tr>
<tr>
<td>1 3/8-12 UNF</td>
<td>5</td>
<td>1314.4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2109.5</td>
</tr>
<tr>
<td>1 1/2-12 UNF</td>
<td>5</td>
<td>1723.9</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2766.8</td>
</tr>
</tbody>
</table>

Tabla 1-4. Serie métrica con roscas gruesas — Con recubrimiento de zinc

<table>
<thead>
<tr>
<th>Designación de serie, roscas por pulgadas y tamaño nominal</th>
<th>Categoría de propiedades</th>
<th>Par de apriete (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Máximo</td>
<td>Nominal</td>
</tr>
<tr>
<td>M4 x 0.7</td>
<td>10.9</td>
<td>3.6</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>4.2</td>
</tr>
<tr>
<td>M5 x 0.8</td>
<td>10.9</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>8.4</td>
</tr>
<tr>
<td>Designación de serie, rosca por pulgadas y tamaño nominal</td>
<td>Categoria de propiedades</td>
<td>Par de apriete (Nm)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
</tr>
<tr>
<td>M6 x 1.0</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M8 x 1.25</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M10 x 1.5</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M12 x 1.75</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M14 x 2</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M16 x 2</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M18 x 2.5</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M20 x 2.5</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M22 x 2.5</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M24 x 3</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M27 x 3</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>M30 x 3.5</td>
<td></td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
</tr>
<tr>
<td>Designación de serie, roscas por pulgadas y tamaño nominal</td>
<td>Categoría de propiedades</td>
<td>Par de apriete (Nm)</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
</tr>
<tr>
<td>M36 x 4</td>
<td>8.8</td>
<td>2089.8</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>2976.4</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>3483.0</td>
</tr>
</tbody>
</table>

Tabla 1-5. Serie métrica con roscas finas — Con recubrimiento de zinc

<table>
<thead>
<tr>
<th>Designación de serie, roscas por pulgadas y tamaño nominal</th>
<th>Categoría de propiedades</th>
<th>Par de apriete (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
</tr>
<tr>
<td>M8 x 1.0</td>
<td>8.8</td>
<td>21.6</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>31.7</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>37.1</td>
</tr>
<tr>
<td>M10 x 0.75</td>
<td>8.8</td>
<td>46.8</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>68.7</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>80.4</td>
</tr>
<tr>
<td>M10 x 1.25</td>
<td>8.8</td>
<td>42.2</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>62.0</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>72.5</td>
</tr>
<tr>
<td>M12 x 1.0</td>
<td>8.8</td>
<td>79.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>116.7</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>136.6</td>
</tr>
<tr>
<td>M12 x 1.25</td>
<td>8.8</td>
<td>76.2</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>111.8</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>130.9</td>
</tr>
<tr>
<td>M12 x 1.5</td>
<td>8.8</td>
<td>72.9</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>107.1</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>125.3</td>
</tr>
<tr>
<td>M14 x 1.5</td>
<td>8.8</td>
<td>120.2</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>176.5</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>206.6</td>
</tr>
<tr>
<td>M16 x 1.5</td>
<td>8.8</td>
<td>184.4</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>270.9</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>317.0</td>
</tr>
<tr>
<td>M18 x 1.5</td>
<td>8.8</td>
<td>276.6</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>394.0</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>461.1</td>
</tr>
<tr>
<td>M20 x 1</td>
<td>8.8</td>
<td>405.7</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>577.8</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>676.1</td>
</tr>
<tr>
<td>Designación de serie, roscas por pulgadas y tamaño nominal</td>
<td>Categoría de propiedades</td>
<td>Par de apriete (Nm)</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Máximo</td>
<td>Nominal</td>
</tr>
<tr>
<td>M20 x 1.5</td>
<td>8.8</td>
<td>386.0</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>549.7</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>643.3</td>
</tr>
<tr>
<td>M22 x 1.5</td>
<td>8.8</td>
<td>520.8</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>741.7</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>868.0</td>
</tr>
<tr>
<td>M24 x 2</td>
<td>8.8</td>
<td>655.8</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>934.0</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>1092.9</td>
</tr>
<tr>
<td>M27 x 2</td>
<td>8.8</td>
<td>951.4</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>1355.0</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>1585.6</td>
</tr>
<tr>
<td>M30 x 1.5</td>
<td>8.8</td>
<td>1369.2</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>1950.0</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>2281.9</td>
</tr>
<tr>
<td>M30 x 2</td>
<td>8.8</td>
<td>1324.6</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>1886.6</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>2207.7</td>
</tr>
<tr>
<td>M33 x 2</td>
<td>8.8</td>
<td>1784.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>2541.6</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>2974.2</td>
</tr>
<tr>
<td>M36 x 2</td>
<td>8.8</td>
<td>2340.1</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>3332.8</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>3900.2</td>
</tr>
</tbody>
</table>
Tabla 1-6. Tornillos de serie métrica de acero inoxidable A2-70/A4-70 con roscas gruesas

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Par de apriete (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2.5 x 0.45</td>
<td>0.4</td>
</tr>
<tr>
<td>M3 x 0.5</td>
<td>0.9</td>
</tr>
<tr>
<td>M4 x 0.7</td>
<td>1.5</td>
</tr>
<tr>
<td>M5 x 0.8</td>
<td>3.1</td>
</tr>
<tr>
<td>M6 x 1</td>
<td>5.3</td>
</tr>
<tr>
<td>M8 x 1.25</td>
<td>13</td>
</tr>
<tr>
<td>M10 x 1.5</td>
<td>27</td>
</tr>
</tbody>
</table>

Los valores de par de apriete que se muestran son para sujetadores instalados con lubricación. Cuando se utilizan sujetadores lubricados, los valores de par de apriete resultan en un 80 % de uso de la resistencia.

Los sujetadores de acero inoxidable tienden a ponerse ásperos cuando se aprietan. Para reducir este riesgo, lubrique las roscas y apriete a velocidades bajas sin interrupciones. No use presión excesiva. No se recomiendan las llaves de impacto.

Tabla 1-7. Tornillos de serie de pulgadas de acero inoxidable 300 (18-8) con roscas gruesas

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Par de apriete</th>
</tr>
</thead>
<tbody>
<tr>
<td># 5-40 (0.125)</td>
<td>6.9</td>
</tr>
<tr>
<td># 6-32 (0.138)</td>
<td>9</td>
</tr>
<tr>
<td># 8-32 (0.164)</td>
<td>18</td>
</tr>
<tr>
<td># 10-24 (0.190)</td>
<td>21</td>
</tr>
<tr>
<td>1/4-20</td>
<td>68</td>
</tr>
<tr>
<td>5/16-18</td>
<td>120</td>
</tr>
<tr>
<td>3/8-16</td>
<td>210</td>
</tr>
</tbody>
</table>

Los valores de par de apriete que se muestran son para sujetadores instalados con lubricación. Cuando se utilizan sujetadores lubricados, los valores de par de apriete resultan en un 80 % de uso de la resistencia.

Los sujetadores de acero inoxidable tienden a ponerse ásperos cuando se aprietan. Para reducir este riesgo, lubrique las roscas y apriete a velocidades bajas sin interrupciones. No use presión excesiva. No se recomiendan las llaves de impacto.
Tabla 1-8. Pernos de cojinete de la serie de pulgadas, sin acabado (negro)

<table>
<thead>
<tr>
<th>Designación de serie, roscas por pulgadas y tamaño nominal</th>
<th>Grado</th>
<th>Par de apriete (pie/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
</tr>
<tr>
<td>5/8-11 UNC</td>
<td>8</td>
<td>234</td>
</tr>
<tr>
<td>5/8-18 UNF</td>
<td>8</td>
<td>250</td>
</tr>
<tr>
<td>3/4-10 UNC</td>
<td>8</td>
<td>385</td>
</tr>
<tr>
<td>7/8-9 UNC</td>
<td>8</td>
<td>615</td>
</tr>
<tr>
<td>1-8 UNC</td>
<td>8</td>
<td>929</td>
</tr>
<tr>
<td>1 1/4-7 UNC</td>
<td>8</td>
<td>2043</td>
</tr>
</tbody>
</table>

Tabla 1-9. Pernos de cojinete de la serie métrica, sin acabado (negro)

<table>
<thead>
<tr>
<th>Designación de serie, roscas por pulgadas y tamaño nominal</th>
<th>Grado</th>
<th>Par de apriete (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
</tr>
<tr>
<td>M20 X 2.5</td>
<td>12.9</td>
<td>756</td>
</tr>
<tr>
<td>M24 X 3</td>
<td>10.9</td>
<td>1089</td>
</tr>
<tr>
<td>M27 X 3</td>
<td>10.9</td>
<td>1591</td>
</tr>
</tbody>
</table>
Tabla 1-10. Serie en pulgadas con roscas gruesas (UNC) — Sin acabado (negro)

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Grado</th>
<th>Par de apriete (pie/lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
</tr>
<tr>
<td>1/4-20</td>
<td>5</td>
<td>9.0</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>12.5</td>
</tr>
<tr>
<td>5/16-18</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>3/8-16</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td>7/16-14</td>
<td>5</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>73</td>
</tr>
<tr>
<td>1/2-13</td>
<td>5</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>120</td>
</tr>
<tr>
<td>9/16-12</td>
<td>5</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>161</td>
</tr>
<tr>
<td>5/8-11</td>
<td>5</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>234</td>
</tr>
<tr>
<td>3/4-10</td>
<td>5</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>385</td>
</tr>
<tr>
<td>7/8-9</td>
<td>5</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>615</td>
</tr>
<tr>
<td>1-8</td>
<td>5</td>
<td>606</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>929</td>
</tr>
<tr>
<td>1 1/8-7</td>
<td>5</td>
<td>813</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1342</td>
</tr>
<tr>
<td>1 1/4-7</td>
<td>5</td>
<td>1141</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2043</td>
</tr>
<tr>
<td>1 3/8-6</td>
<td>5</td>
<td>1519</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2496</td>
</tr>
<tr>
<td>1 1/2-6</td>
<td>5</td>
<td>2028</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3276</td>
</tr>
</tbody>
</table>
Tabla 1-11. Serie en pulgadas con roscas finas (UNF) — Sin acabado (negro)

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Grado</th>
<th>Par de apriete (pie/lb)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
<td>Nominal</td>
<td>Mínimo</td>
<td></td>
</tr>
<tr>
<td>1/4-28</td>
<td>5</td>
<td>10</td>
<td>9.5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>14.5</td>
<td>14</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>5/16-24</td>
<td>5</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>3/8-24</td>
<td>5</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>53</td>
<td>51</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>7/16-20</td>
<td>5</td>
<td>57</td>
<td>55</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>85</td>
<td>82</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>1/2-20</td>
<td>5</td>
<td>88</td>
<td>84.5</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>125</td>
<td>120</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>9/16-18</td>
<td>5</td>
<td>126</td>
<td>121</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>177</td>
<td>170</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>5/8-18</td>
<td>5</td>
<td>182</td>
<td>174.5</td>
<td>167</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>250</td>
<td>240</td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>3/4-16</td>
<td>5</td>
<td>312</td>
<td>299.5</td>
<td>287</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>425</td>
<td>409</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td>7/8-14</td>
<td>5</td>
<td>458</td>
<td>439.5</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>672</td>
<td>646</td>
<td>620</td>
<td></td>
</tr>
<tr>
<td>1-12</td>
<td>5</td>
<td>658</td>
<td>632</td>
<td>606</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1009</td>
<td>970</td>
<td>931</td>
<td></td>
</tr>
<tr>
<td>1-14 UNS</td>
<td>5</td>
<td>670</td>
<td>644.5</td>
<td>619</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>945</td>
<td>908.5</td>
<td>872</td>
<td></td>
</tr>
<tr>
<td>1 1/8-12</td>
<td>5</td>
<td>882</td>
<td>848</td>
<td>814</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>1500</td>
<td>1440</td>
<td>1380</td>
<td></td>
</tr>
<tr>
<td>1 1/4-12</td>
<td>5</td>
<td>1251</td>
<td>1203</td>
<td>1155</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2092</td>
<td>2008.5</td>
<td>1925</td>
<td></td>
</tr>
<tr>
<td>1 3/8-12</td>
<td>5</td>
<td>1704</td>
<td>1638</td>
<td>1572</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2833</td>
<td>2719</td>
<td>2605</td>
<td></td>
</tr>
<tr>
<td>1 1/2-12</td>
<td>5</td>
<td>2288</td>
<td>2196.5</td>
<td>2105</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3640</td>
<td>3500</td>
<td>3360</td>
<td></td>
</tr>
<tr>
<td>Tamaño</td>
<td>Categoría de propiedades</td>
<td>Par de apriete (Nm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------</td>
<td>---------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
<td>Nominal</td>
<td>Mínimo</td>
<td></td>
</tr>
<tr>
<td>M4 x 0.7</td>
<td></td>
<td>8.8</td>
<td>3.1</td>
<td>2.9</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>4.5</td>
<td>4.3</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>5.4</td>
<td>5.2</td>
<td>4.9</td>
</tr>
<tr>
<td>M5 x 0.8</td>
<td></td>
<td>8.8</td>
<td>6.5</td>
<td>6.2</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>9.2</td>
<td>8.9</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>11</td>
<td>10.5</td>
<td>10</td>
</tr>
<tr>
<td>M6 x 1</td>
<td></td>
<td>8.8</td>
<td>11</td>
<td>10.5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>16</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>19</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>M8 x 1.25</td>
<td></td>
<td>8.8</td>
<td>27</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>38</td>
<td>36.5</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>45</td>
<td>43.5</td>
<td>42</td>
</tr>
<tr>
<td>M10 x 1.5</td>
<td></td>
<td>8.8</td>
<td>53</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>75</td>
<td>72</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>89</td>
<td>86</td>
<td>83</td>
</tr>
<tr>
<td>M12 x 1.75</td>
<td></td>
<td>8.8</td>
<td>93</td>
<td>89</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>130</td>
<td>125</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>156</td>
<td>150</td>
<td>144</td>
</tr>
<tr>
<td>M14 x 2</td>
<td></td>
<td>8.8</td>
<td>148</td>
<td>142</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>212</td>
<td>203.5</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>248</td>
<td>238</td>
<td>228</td>
</tr>
<tr>
<td>M16 x 2</td>
<td></td>
<td>8.8</td>
<td>230</td>
<td>221</td>
<td>212</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>322</td>
<td>310</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>387</td>
<td>372</td>
<td>357</td>
</tr>
<tr>
<td>M18 x 2.5</td>
<td></td>
<td>8.8</td>
<td>319</td>
<td>306.5</td>
<td>294</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>455</td>
<td>436.5</td>
<td>418</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>532</td>
<td>511</td>
<td>490</td>
</tr>
<tr>
<td>M20 x 2.5</td>
<td></td>
<td>8.8</td>
<td>447</td>
<td>430</td>
<td>413</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>629</td>
<td>605</td>
<td>581</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>756</td>
<td>727</td>
<td>698</td>
</tr>
<tr>
<td>M22 x 2.5</td>
<td></td>
<td>8.8</td>
<td>608</td>
<td>585</td>
<td>562</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>856</td>
<td>823</td>
<td>790</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>1029</td>
<td>989</td>
<td>949</td>
</tr>
<tr>
<td>M24 x 3</td>
<td></td>
<td>8.8</td>
<td>774</td>
<td>744</td>
<td>714</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.9</td>
<td>1089</td>
<td>1047</td>
<td>1005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.9</td>
<td>1306</td>
<td>1256</td>
<td>1206</td>
</tr>
<tr>
<td>Tamaño</td>
<td>Categoría de propiedades</td>
<td>Par de apriete (Nm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------</td>
<td>---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
<td>Nominal</td>
<td>Mínimo</td>
<td></td>
</tr>
<tr>
<td>M27 x 3</td>
<td>8.8</td>
<td>1134</td>
<td>1090</td>
<td>1046</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>1591</td>
<td>1530</td>
<td>1469</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>1910</td>
<td>1836.5</td>
<td>1763</td>
<td></td>
</tr>
<tr>
<td>M30 x 3.5</td>
<td>8.8</td>
<td>1538</td>
<td>1479</td>
<td>1420</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>2163</td>
<td>2080</td>
<td>1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>2595</td>
<td>2495</td>
<td>2395</td>
<td></td>
</tr>
<tr>
<td>M36 x 4</td>
<td>8.8</td>
<td>2681</td>
<td>2578.5</td>
<td>2476</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>3964</td>
<td>3812</td>
<td>3660</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>4639</td>
<td>4461</td>
<td>4283</td>
<td></td>
</tr>
</tbody>
</table>
Tabla 1-13. Serie métrica con roscas finas — Sin acabado (negro)

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Categoría de propiedades</th>
<th>Par de apriete (Nm)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
<td>Nominal</td>
</tr>
<tr>
<td>M8 x 1</td>
<td>8.8</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>41</td>
<td>39.5</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>49</td>
<td>47</td>
</tr>
<tr>
<td>M10 x 0.75</td>
<td>8.8</td>
<td>57</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>81</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>96</td>
<td>93</td>
</tr>
<tr>
<td>M10 x 1.25</td>
<td>8.8</td>
<td>57</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>81</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>96</td>
<td>93</td>
</tr>
<tr>
<td>M12 x 1</td>
<td>8.8</td>
<td>101</td>
<td>97.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>150</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>175</td>
<td>168</td>
</tr>
<tr>
<td>M12 x 1.25</td>
<td>8.8</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>147</td>
<td>141.5</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>172</td>
<td>165.5</td>
</tr>
<tr>
<td>M12 x 1.5*</td>
<td>8.8</td>
<td>100</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>140</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>168</td>
<td>162</td>
</tr>
<tr>
<td>M14 x 1.5</td>
<td>8.8</td>
<td>160</td>
<td>153.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>229</td>
<td>220</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>268</td>
<td>257</td>
</tr>
<tr>
<td>M16 x 1.5</td>
<td>8.8</td>
<td>248</td>
<td>238.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>348</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>418</td>
<td>402</td>
</tr>
<tr>
<td>M18 x 1.5</td>
<td>8.8</td>
<td>345</td>
<td>331.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>491</td>
<td>471</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>575</td>
<td>552</td>
</tr>
<tr>
<td>M20 x 1</td>
<td>8.8</td>
<td>471</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>694</td>
<td>667.5</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>812</td>
<td>781</td>
</tr>
<tr>
<td>M20 x 1.5</td>
<td>8.8</td>
<td>483</td>
<td>464.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>679</td>
<td>653</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>816</td>
<td>785</td>
</tr>
<tr>
<td>M22 x 1.5</td>
<td>8.8</td>
<td>657</td>
<td>632</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>924</td>
<td>888.5</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>1111</td>
<td>1068</td>
</tr>
</tbody>
</table>
Espárragos soldados

Salvo indicación contraria, se aplican los siguientes valores de apriete para grado 2 (± 10 %).

Tabla 1-14. Valores de par de apriete de espárragos soldados

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Par de apriete (Nm)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Máximo</td>
<td>Nominal</td>
</tr>
<tr>
<td>M24 x 2</td>
<td>8.8</td>
<td>836</td>
<td>803.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>1176</td>
<td>1130.5</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>1410</td>
<td>1356</td>
</tr>
<tr>
<td>M27 x 2</td>
<td>8.8</td>
<td>1225</td>
<td>1171.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>1718</td>
<td>1652.5</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>2063</td>
<td>1983.5</td>
</tr>
<tr>
<td>M30 x 1.5</td>
<td>8.8</td>
<td>1530</td>
<td>1471.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>2253</td>
<td>2166.5</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>2637</td>
<td>2536</td>
</tr>
<tr>
<td>M30 x 2</td>
<td>8.8</td>
<td>1661</td>
<td>1597.5</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>2336</td>
<td>2246.5</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>2800</td>
<td>2695</td>
</tr>
<tr>
<td>M33 x 2</td>
<td>8.8</td>
<td>2141</td>
<td>2059</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>3155</td>
<td>3034</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>3692</td>
<td>3550.5</td>
</tr>
<tr>
<td>M36 x 2</td>
<td>8.8</td>
<td>2795</td>
<td>2688</td>
</tr>
<tr>
<td></td>
<td>10.9</td>
<td>4118</td>
<td>3960</td>
</tr>
<tr>
<td></td>
<td>12.9</td>
<td>4818</td>
<td>4634</td>
</tr>
</tbody>
</table>
INSPECCIÓN Y MANTENIMIENTO DEL CABLE DEL MALACATE

Cable del malacate

Las grúas pueden estar equipadas con un cable de elevación sintético o con un cable de acero. El cable de elevación se puede adquirir a través de Manitowoc Crane Care.

Para información más detallada con respecto al cable de elevación sintético, consulte el Manual de cables sintéticos de elevación sintéticos para grúas K100™ N/P 9828100734, disponible de Manitowoc Crane Care.

Durante la instalación y la configuración, se debe tener cuidado para evitar que los cables de elevación de alambre o sintéticos se traslape o se entrecruce.

Asegúrese de que las superficies en la grúa, como las de las almohadillas de desgaste, de las poleas, etc., no se hayan dañado de tal forma que puedan dañar el cable de elevación sintético.

ADVERTENCIA

¡Riesgo por equipo desgastado o dañado!

Nunca use un cable de elevación desgastado o dañado. Se pueden producir lesiones graves o la muerte debido al uso de un cable de elevación desgastado o dañado.

El cable de elevación debe inspeccionarse frecuentemente. Diariamente/mensualmente y periódicamente/anualmente según la información dada a continuación, citada de la Norma de Consenso Nacional, referida por agencias del gobierno federal. Los intervalos recomendados de inspección pueden variar entre máquinas y variar según las condiciones ambientales, la frecuencia de elevación de cargas y la exposición a cargas de impacto. Los intervalos de inspección también pueden ser determinados por agencias gubernamentales estatales y locales.

Todo deterioro que se observe en el cable de elevación debe anotarse en el registro de inspecciones del equipo y una persona calificada deberá evaluar si es necesario reemplazar el cable de elevación.

Registros

Un archivo de informes firmados y con fecha de la condición del cable de elevación en cada inspección periódica debe llevarse en todo momento. El informe deberá cubrir todos los puntos de inspección mencionados en esta sección. La información de los registros puede utilizarse para establecer datos que pueden usarse para determinar cuándo hay que sustituir un cable de elevación.

Se recomienda que el programa de inspección del cable de elevación incluya informes sobre la revisión de los cables puestos fuera de servicio. Esta información puede utilizarse para establecer una relación entre las inspecciones visuales y la condición interna real del cable al ponerlo fuera de servicio.

CABLE

Generalidades

La información siguiente incluye recomendaciones para la inspección, reemplazo y mantenimiento de cables, según lo establece la norma ANSI/ASME B30.5, los reglamentos federales y las especificaciones de National Crane. El intervalo entre inspecciones debe ser determinado por una persona calificada y debe basarse en la vida útil anticipada del cable, determinada por la experiencia, la severidad del entorno, el porcentaje de elevación de cargas de capacidad máxima, los ritmos de trabajo y la exposición a cargas de impacto. Las inspecciones periódicas no necesariamente deberán estar separadas por intervalos iguales en el calendario y deberán llevarse a cabo en intervalos más cortos cuando el cable se acerca al final de su vida útil. Se debe efectuar una inspección periódica al menos una vez al año.

La información siguiente contiene los procedimientos de inspección y mantenimiento de los cables usados en productos National Crane tales como cables de carga, cables de elevación, cables de extensión y retracción de la pluma, cables fijos y cables de amarre del aparejo de gancho.

Condiciones ambientales

La vida útil del cable puede variar debido al grado de severidad del entorno. Las variaciones de temperatura, niveles continuos de exceso de humedad, exposición a productos químicos o vapores corrosivos o contacto del cable con materiales abrasivos pueden acortar la vida útil del cable. Se recomienda efectuar inspecciones frecuentes del cable y los trabajos de mantenimiento del caso para evitar el desgaste prematuro y asegurar un servicio a largo plazo.

Cargas de impactos dinámicos

Si se expone el cable a cargas anormales, se acorta su vida útil. A continuación se mencionan ejemplos de estos tipos de cargas:

- Movimientos a velocidades altas, para luego detenerse abruptamente (elevación o giro de una carga)
- Suspensión de cargas mientras se conduce la máquina sobre superficies irregulares tales como vías férreas, baches y terreno accidentado
- El traslado de una carga que excede la capacidad de la grúa

Lubricación

El propósito de lubricar el cable es reducir la fricción interna y evitar la corrosión. Es necesario añadirle lubricante nuevo al cable a lo largo de su vida útil. Es importante que el lubricante aplicado sea compatible con el lubricante original.
Consulte al fabricante del cable para el lubricante adecuado. El lubricante que se aplique debe ser de un tipo tal que no obstruya la inspección visual. Las secciones del cable ubicadas sobre poleas o que quedan ocultas durante la inspección requieren de atención especial al lubricar el cable.

Durante la fabricación, los cables reciben lubricación que los protege por un tiempo razonable si se los almacena en condiciones adecuadas. Después de que se ponga el cable en servicio, es necesario aplicarle lubricante de cables adecuado periódicamente. El lubricante del cable deberá tener las características siguientes:

- Estar libre de ácidos y álcalis y tener fuerza de adhesión suficiente para permanecer en los cables
- Su grado de viscosidad deberá permitirle penetrar los espacios entre los hilos y las trenzas
- No deberá ser soluble en los medios que le rodeen durante las condiciones de trabajo reales (p. ej., en agua)
- Deberá tener una resistencia elevada a las rozaduras
- Resistente a oxidación

Quite la tierra del cable antes de aplicarle lubricante. Utilice un cepillo de alambre con cerdas duras y disolvente, aire comprimido o vapor para limpiar el cable. Lubrique el cable inmediatamente después de haberlo limpiado. Los métodos de lubricación son baño, goteo, vertido, aplicación con trapo, aplicación con brocha o rocío a presión (Figura 1-5). Aplique el lubricante en la curva superior del cable, porque en ese punto las trenzas están más separadas y se penetran con mayor facilidad. No lubrique un cable que esté soportando una carga. La vida útil de un cable es directamente proporcional a la cantidad de lubricante que alcanza las partes móviles del cable.

Recomendaciones de servicio del cable

- Desconecte y bloquee la alimentación de los equipos al retirarles o instalarles cables.
- Utilice gafas de seguridad para protegerse los ojos.
- Use vestimenta protectora, guantes y zapatos de seguridad.
- Utilice soportes y abrazaderas para impedir el movimiento inesperado del cable, las piezas y el equipo.
- Al sustituir cables de largo fijo (por ejemplo, pendientes) con adaptadores instalados de modo permanente en sus cables, utilice únicamente los tramos prefabricados de cables provistos por Manitowoc Crane Care. No fabrique los tramos usando componentes separados.
- Siempre reemplace todo el conjunto del cable. No intente reparar un cable dañado ni sus cabos.
- Nunca someta los cables a galvanoplastia.
- No suelde ningún cable ni sus componentes a menos que el fabricante del cable así lo recomiende.
- No permita que soldadura salpique sobre el cable ni sobre sus cabos.
- No permita que el cable se convierta en una trayectoria para la corriente eléctrica durante las operaciones de soldadura.
- Los cables se fabrican de acero especial. Si el cable se ha calentado, bote todo el tramo de cable.
- Los grupos de cables deben sustituirse como grupo.
- No pinte ni cubra los cables con sustancia alguna salvo los lubricantes aprobados.

Inspección de cables

Inspeccione el cable según la información siguiente tomada de una Norma de Consenso Nacional, referida por Agencias del Gobierno Federal. Los intervalos de inspección recomendados dependen de la máquina, de las condiciones ambientales, de la frecuencia con la que se levantan cargas y la exposición a cargas de impacto. Los intervalos de inspección también pueden ser determinados por agencias gubernamentales estatales y locales.

NOTA: El cable se encuentra disponible a través de Manitowoc Crane Care.
Anote todo deterioro del cable en el registro de inspección del equipo. Una persona calificada deberá determinar si es necesario sustituir el cable.

Inspección diaria

Se recomienda efectuar una inspección visual diaria de todos los cables que estén en servicio. Utilice las inspecciones diarias para supervisar la degradación progresiva y para identificar daños que requieran cambiar el cable, tales como:

- Deformaciones, retorceduras, aplastamiento, soltado de trenzas, encapsulado, reducción de diámetro, etc.
- Corrosión en general
- Trenzas rotas o cortadas

Inspecciones mensuales

Revise el largo total del cable mensualmente o con más frecuencia si así lo dictaminan las condiciones adversas. Inspeccione únicamente la superficie exterior del cable. No intente abrir las trenzas del cable. Los elementos a incluirse en la inspección mensual son los que se mencionan en el procedimiento de inspección diaria más los siguientes:

- Esta inspección debe documentarse de acuerdo con los reglamentos 1926.1412 (e) (3) de la OSHA.
- La inspección debe monitorear que cualquier deficiencia que se haya determinado durante la inspección anual, no represente actualmente un riesgo de seguridad.

Inspección anual

Revise el largo total del cable anualmente o con más frecuencia si así lo dictaminan las condiciones adversas. Inspeccione únicamente la superficie exterior del cable. No intente abrir las trenzas del cable. Los elementos a incluirse en la inspección anual son los que se mencionan en el procedimiento de inspección diaria más los siguientes:

- Reducción del diámetro del cable por debajo del diámetro nominal
- Alambres sumamente corroídos o rotos en las fijaciones de los extremos
- Fijaciones de extremo sumamente corroídas, rotas, deformadas, desgastadas o mal colocadas
- Deterioro en zonas tales como:
 - Secciones en contacto con los caballetes, poleas igualadoras y poleas de otro tipo que limiten el movimiento del cable
 - Secciones del cable en los cabos, o cerca de los mismos, de las cuales sobresalgan hilos corroídos o rotos
 - Secciones del cable que entren en contacto con las superficies fijas, en donde pueden sufrir abrasión o rozamiento como resultado de la vibración del equipo
- Poleas de extensión o retracción de la pluma que estén dañadas o que se muevan de modo irregular, lo cual puede acelerar el deterioro del cable
- Holgura/estiramiento anormal del cable

NOTA: Compruebe que los cables que se usan en grupo tengan tensión uniforme aplicada. Si es necesario ajustar un mismo cable en repetidas ocasiones, esto es evidencia del estiramiento del cable e
indica que es necesario efectuar inspecciones más detalladas para determinar y corregir la causa del estiramiento.
Sustitución de cables (todos los cables)

No hay reglas precisas para determinar cuándo hay que reemplazar un cable debido a las variables que ello involucra. Para determinar la condición de un cable se depende principalmente del criterio de una persona calificada.

La información siguiente se ha tomado de la Norma de Consenso Nacional referida por las Agencias del Gobierno Federal y las recomendaciones de Manitowoc Crane Care para ayudar a determinar cuándo hay que reemplazar el cable. El cable debe ser sustituido cuando se produzca alguna de las siguientes condiciones:

- En los cables móviles, si hay seis hilos rotos distribuidos al azar o tres hilos rotos en una misma trenza de una camada (vea la Figura 1-6)
- Desgaste de los hilos exteriores individuales hasta un tercio del diámetro original
- Torcido, aplastamiento, encapsulado u otros daños que alteren la estructura del cable
- Evidencia de daños por calor
- Reducciones del diámetro nominal por más de:
 - 1/64 pulg para cables de diámetros de hasta 5/16 pulg inclusive
 - 1/32 pulg para diámetros de 3/8 y 1/2 pulg inclusive
 - 3/64 pulg para diámetros de 9/16 a 3/4 pulg inclusive
 - 1/16 pulg para diámetros de 7/8 a 1-1/8 pulg inclusive
 - 3/32 pulg para diámetros de 1/14 a 1-1/2 pulg inclusive
- En cables fijos, cuando tienen más de dos hilos rotos en una camada de hilos en las secciones por debajo de la conexión terminal, o más de uno en una conexión terminal
- National Crane recomienda que en las plumas extendidas por cable, si hay un solo cable dañado, es necesario sustituir todo el juego de cables de extensión

NOTA 1: National Crane recomienda remplazar los cables de extensión de la pluma cada siete (7) años.

FIGURA 1-6

La camada corre paralela a la línea central del cable y es la distancia que requiere una trenza para formar una espiral completa alrededor del cable.
Sujeción de cables

Es importante sujetar los cabos de los cables resistentes a rotación para evitar el desplazamiento y deshebrado de los hilos y trenzas del cabo. Todos los cables prefabricados y no prefabricados requieren la sujeción de sus cabos antes de cortarlos. Los sujetadores deberán colocarse en ambos lados del punto en el cual se cortará el alambre. Los dos métodos de sujeción de cables se describen a continuación.

Método 1

Usando un tramo de alambre recocado blando, coloque un extremo en la ranura entre dos trenzas del cable. Gire el extremo largo del alambre recocado para colocarlo perpendicular respecto a los hilos del cable y envuélvalo ajustadamente sobre la porción de la ranura.

Trence los dos extremos del alambre recocado ajustadamente para unirlos. Recorte el excedente del alambre y martillelo hasta dejarlo plano contra el cable (vea la Figura 1-7).

Método 2

Envuelva un tramo de alambre recocado blando alrededor del cable por lo menos siete veces. Retuerza los dos extremos en el centro del dispositivo de sujeción. Apriete la sujeción apalancando y trenzando el alambre de modo alternado. Recorte los dos extremos del alambre y martillelo hasta dejarlo plano contra el cable (Figura 1-8).

NOTA: Los cables no prefabricados deben tener dos sujeciones ubicadas en cada lado del corte (vea la Figura 1-9).
SECCIÓN 2
SISTEMA HIDRÁULICO

CONTENIDO DE LA SECCIÓN

<table>
<thead>
<tr>
<th>Mantenimiento</th>
<th>2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalidades</td>
<td>2-4</td>
</tr>
<tr>
<td>Precauciones para el mantenimiento del sistema hidráulico</td>
<td>2-4</td>
</tr>
<tr>
<td>Rotulación de piezas durante el desarmado</td>
<td>2-4</td>
</tr>
<tr>
<td>Precauciones para la soldadura</td>
<td>2-4</td>
</tr>
<tr>
<td>Sustitución de piezas</td>
<td>2-4</td>
</tr>
<tr>
<td>Servicio</td>
<td>2-4</td>
</tr>
<tr>
<td>Recomendaciones para el aceite hidráulico</td>
<td>2-4</td>
</tr>
<tr>
<td>Vaciado y enjuague</td>
<td>2-5</td>
</tr>
<tr>
<td>Eliminación de aire del sistema hidráulico</td>
<td>2-5</td>
</tr>
<tr>
<td>Descripción del sistema</td>
<td>2-6</td>
</tr>
<tr>
<td>Bomba hidráulica</td>
<td>2-6</td>
</tr>
<tr>
<td>Válvula de control de sentido (DCV)</td>
<td>2-6</td>
</tr>
<tr>
<td>Colector de bloqueo de RCL</td>
<td>2-7</td>
</tr>
<tr>
<td>Válvula de control de giro y del aire acondicionado</td>
<td>2-7</td>
</tr>
<tr>
<td>Colectores de control de estabilizadores</td>
<td>2-7</td>
</tr>
<tr>
<td>Depósito hidráulico con filtro</td>
<td>2-7</td>
</tr>
<tr>
<td>Palancas de control remoto hidráulicas (HRC)</td>
<td>2-7</td>
</tr>
<tr>
<td>Colector piloto</td>
<td>2-7</td>
</tr>
<tr>
<td>Colector de control remoto por radio (opcional)</td>
<td>2-7</td>
</tr>
<tr>
<td>Colector de circuito de herramienta (opcional)</td>
<td>2-7</td>
</tr>
<tr>
<td>Colector de multiplicador de presión (opcional)</td>
<td>2-7</td>
</tr>
<tr>
<td>Colector de la bomba</td>
<td>2-8</td>
</tr>
<tr>
<td>Colector del motor de giro (con opción de controles remotos)</td>
<td>2-8</td>
</tr>
<tr>
<td>Adaptador giratorio hidráulico</td>
<td>2-8</td>
</tr>
<tr>
<td>Enfriador de aceite hidráulico</td>
<td>2-8</td>
</tr>
<tr>
<td>Válvulas hidráulicas</td>
<td>2-8</td>
</tr>
<tr>
<td>Procedimientos de ajuste de presión de válvulas de alivio</td>
<td>2-13</td>
</tr>
<tr>
<td>Descripción</td>
<td>2-13</td>
</tr>
<tr>
<td>Mantenimiento</td>
<td>2-13</td>
</tr>
<tr>
<td>Revisión de presión del sistema</td>
<td>2-15</td>
</tr>
<tr>
<td>Depósito hidráulico y filtro</td>
<td>2-17</td>
</tr>
<tr>
<td>Sustitución del filtro hidráulico</td>
<td>2-18</td>
</tr>
<tr>
<td>Enfriador de aceite hidráulico</td>
<td>2-19</td>
</tr>
<tr>
<td>Servicio y mantenimiento del enfriador de aceite hidráulico</td>
<td>2-19</td>
</tr>
<tr>
<td>Válvulas hidráulicas</td>
<td>2-19</td>
</tr>
<tr>
<td>Válvula de control de sentido (DCV)</td>
<td>2-20</td>
</tr>
<tr>
<td>Palancas de control remoto hidráulicas</td>
<td>2-21</td>
</tr>
<tr>
<td>Colectores de estabilizadores</td>
<td>2-21</td>
</tr>
<tr>
<td>Válvulas de retención</td>
<td>2-21</td>
</tr>
<tr>
<td>Mecanismo de giro</td>
<td>2-21</td>
</tr>
<tr>
<td>Interruptor de alimentación de funciones de grúa</td>
<td>2-21</td>
</tr>
<tr>
<td>Bomba hidráulica</td>
<td>2-22</td>
</tr>
<tr>
<td>Descripción</td>
<td>2-22</td>
</tr>
<tr>
<td>Retiro</td>
<td>2-22</td>
</tr>
<tr>
<td>Instalación</td>
<td>2-22</td>
</tr>
<tr>
<td>Arranque de la bomba</td>
<td>2-22</td>
</tr>
<tr>
<td>Ajuste de presión de margen de la bomba</td>
<td>2-23</td>
</tr>
<tr>
<td>Ajuste de la presión máxima de la bomba</td>
<td>2-23</td>
</tr>
<tr>
<td>Ajuste de presión de la válvula de alivio de detección de carga</td>
<td>2-23</td>
</tr>
<tr>
<td>Localización de averías</td>
<td>2-25</td>
</tr>
</tbody>
</table>

Esta sección describe el sistema hidráulico, los componentes que forman el sistema hidráulico y los componentes que dependen del sistema hidráulico para su funcionamiento. Esto incluye descripciones de los circuitos de suministro de presión y de retorno, bombas, válvulas y cilindros. Las descripciones detalladas y el funcionamiento de los circuitos hidráulicos individuales se discuten en sus secciones individuales según aplica. Una tabla con el título Símbolos hidráulicos contiene todos los símbolos hidráulicos utilizados en los diagramas esquemáticos de este manual.
Tabla 2-1. Símbolos hidráulicos

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depósito hidráulico: almacena, enfriá y limpia el suministro de aceite</td>
<td></td>
</tr>
<tr>
<td>hidráulico de la máquina</td>
<td></td>
</tr>
<tr>
<td>Líneas de retorno hidráulico - terminadas en: (1) debajo del nivel del</td>
<td></td>
</tr>
<tr>
<td>líquido, (2) sobre el nivel del líquido</td>
<td></td>
</tr>
<tr>
<td>Bomba hidráulica: (1) caudal fijo; (2) caudal variable</td>
<td></td>
</tr>
<tr>
<td>Fuente de alimentación: suministra energía a la bomba hidráulica (1) motor</td>
<td></td>
</tr>
<tr>
<td>de combustión, (2) motor eléctrico</td>
<td></td>
</tr>
<tr>
<td>Motores hidráulicos: (1) unidireccional, (2) bidireccional</td>
<td></td>
</tr>
<tr>
<td>Interruptor de bomba: desconecta la bomba de la fuente de alimentación</td>
<td></td>
</tr>
<tr>
<td>Línea continua: líneas de suministro o retorno</td>
<td></td>
</tr>
<tr>
<td>Líneas de conexión: ramales que se conectan a la línea principal</td>
<td></td>
</tr>
<tr>
<td>Línea de guiones: presión piloto</td>
<td></td>
</tr>
<tr>
<td>Línea de puntos: vaciado de la caja o detección de carga</td>
<td></td>
</tr>
<tr>
<td>Línea de cadena: envuelta de dos o más funciones contenidas en una sola</td>
<td></td>
</tr>
<tr>
<td>unidad</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transductor de presión: unidad hidráulica/eléctrica ubicada en el circuito</td>
<td></td>
</tr>
<tr>
<td>del cilindro de elevación para el circuito del RCL de la grúa</td>
<td></td>
</tr>
<tr>
<td>Filtro: elimina los contaminantes del aceite hidráulico</td>
<td></td>
</tr>
<tr>
<td>Filtro con válvula de derivación: la válvula de derivación permite que el</td>
<td></td>
</tr>
<tr>
<td>aceite hidráulico derive al filtro si este se obstruye</td>
<td></td>
</tr>
<tr>
<td>Acumulador: se usa para desarrollar caudal o absorber choques</td>
<td></td>
</tr>
<tr>
<td>Válvula de retención: crea contrapresión</td>
<td></td>
</tr>
<tr>
<td>Orificio: restricción fija instalada en línea</td>
<td></td>
</tr>
<tr>
<td>Orificio ajustable: restricción instalada en línea usada como dispositivo</td>
<td></td>
</tr>
<tr>
<td>de control</td>
<td></td>
</tr>
<tr>
<td>Enfriador de aceite hidráulico: enfriá el aceite hidráulico</td>
<td></td>
</tr>
<tr>
<td>Interruptor de temperatura: regula la temperatura del aceite hidráulico</td>
<td></td>
</tr>
<tr>
<td>Interruptor de presión hidráulica: detecta la presión hidráulica y activa</td>
<td></td>
</tr>
<tr>
<td>componentes eléctricos</td>
<td></td>
</tr>
<tr>
<td>Interruptor de caudal: Ilumina una luz para indicar que hay una falla</td>
<td></td>
</tr>
<tr>
<td>Válvula de alivio: protege al sistema contra la presión excesiva</td>
<td></td>
</tr>
<tr>
<td>Válvula reductora de presión: regula la presión máxima</td>
<td></td>
</tr>
<tr>
<td>Válvula de vaivén: se usa para enviar la presión máxima a ciertos componentes</td>
<td></td>
</tr>
<tr>
<td>Descripción</td>
<td>Símbolo</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Accionada manualmente: una válvula que se conmuta manualmente con la válvula de retención para permitir el flujo de retorno al depósito</td>
<td></td>
</tr>
<tr>
<td>Accionado neumáticamente: válvula conmutada por un dispositivo neumático</td>
<td></td>
</tr>
<tr>
<td>Accionado por piloto: válvula conmutada por presión piloto</td>
<td></td>
</tr>
<tr>
<td>Accionado eléctricamente: válvula conmutada por energía eléctrica</td>
<td></td>
</tr>
<tr>
<td>Válvula de freno: activa el freno de giro</td>
<td></td>
</tr>
<tr>
<td>Carrete de cilindro de centro abierto: válvula de control de sentido para el funcionamiento de un cilindro hidráulico que envía el caudal de regreso al depósito a través del centro abierto cuando está en punto muerto</td>
<td></td>
</tr>
<tr>
<td>Carrete de motor de centro abierto: válvula de control de sentido para el funcionamiento de un motor hidráulico que envía el caudal de regreso al depósito a través del centro abierto cuando está en punto muerto. Permite el flujo de retorno al depósito cuando se apaga la grúa</td>
<td></td>
</tr>
<tr>
<td>Carrete de cilindro de centro cerrado: válvula de control de sentido con compensación de presión para un cilindro hidráulico que retorna el caudal al depósito con un cartucho de válvula de descarga</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Símbolo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrete de motor de centro cerrado: válvula de control de sentido con compensación de presión para motores con lumbrera abierta para retornar el caudal al depósito. Permite el flujo de retorno al depósito cuando se apaga la grúa</td>
<td></td>
</tr>
<tr>
<td>Cilindro de acción simple: se extiende por medios hidráulicos y se retrae por medio de un resorte</td>
<td></td>
</tr>
<tr>
<td>Cilindro de acción doble: se extiende y se retrae hidráulicamente</td>
<td></td>
</tr>
<tr>
<td>Cilindro telescópico de acción doble: una varilla fija empuja el tubo hacia fuera cuando la válvula de retención se levanta de su asiento</td>
<td></td>
</tr>
<tr>
<td>Cilindro telescópico multietapa: se usa para el funcionamiento de secciones múltiples sincronizadas</td>
<td></td>
</tr>
<tr>
<td>Gato de estabilizador invertido: extiende el tubo hacia abajo para elevar la grúa sobre el suelo</td>
<td></td>
</tr>
<tr>
<td>Válvula de retención: evita que el cilindro de elevación de la pluma se desplome si llega a ocurrir una falla de presión hidráulica (p. ej., la ruptura de una manguera)</td>
<td></td>
</tr>
<tr>
<td>Válvula de retención activada por piloto (con alivio térmico): requiere de presión piloto para sacar de su asiento la válvula de retención de una vía (no ajustable)</td>
<td></td>
</tr>
<tr>
<td>Válvula divisora de caudal: regula el caudal enviado a un circuito seleccionado</td>
<td></td>
</tr>
<tr>
<td>Freno de malacate: retiene la carga después de que el control se vuelva a colocar en punto muerto (aplicado por resorte y liberado hidráulicamente)</td>
<td></td>
</tr>
<tr>
<td>Freno de giro: un freno que se aplica por resorte y se libera hidráulicamente que sujeta a la superestructura en su lugar</td>
<td></td>
</tr>
</tbody>
</table>
MANTENIMIENTO

Generalidades

Antes de iniciar los procedimientos de ajuste y reparación en una grúa, debe tomar las precauciones siguientes según corresponda:

- Coloque un rótulo de advertencia en un lugar visible en los controles que indique que la máquina requiere de ajuste o reparación antes de que pueda ser utilizada.
- Estacione la grúa en un lugar que no interfiera con otros equipos y operaciones en la zona.
- Coloque todos los controles en la posición de apagado y aplique los frenos para impedir los movimientos inesperados.
- Inhabilite todos los métodos de arranque del motor del camión.
- Baje la pluma al suelo o coloque medios para impedir que caiga.
- Baje el aparejo de gancho al suelo o utilice otros medios para impedir que caiga.
- Alivie la presión hidráulica de todos los circuitos hidráulicos antes de soltar o retirar los componentes hidráulicos.

Después de haber hecho los ajustes o reparaciones del caso, no vuelva a poner la grúa en servicio hasta haber vuelto a instalar todos los protectores, haber purgado el aire del sistema hidráulico de ser necesario, haber reactivado los dispositivos de seguridad y haber retirado los equipos de mantenimiento y letreros de advertencia.

Los ajustes y reparaciones deberán ser efectuados por personal designado para ello y que cuente con la capacitación adecuada. Utilice únicamente repuestos suministrados por National Crane para reparar la grúa.

Precauciones para el mantenimiento del sistema hidráulico

La entrada de contaminantes en un sistema hidráulico afecta su funcionamiento y causa daños graves a los componentes del sistema. La suciedad es una de las causas principales de fallas de componentes de los sistemas hidráulicos.

Si se descubre evidencia de partículas extrañas en el sistema hidráulico, lave el sistema.

Desarme y arme los componentes hidráulicos sobre una superficie limpia.

Limpie todas las piezas metálicas con un líquido limpiador no inflamable. Después lubrique todos los componentes para ayudar al armado.

Inspeccione todos los elementos selladores (anillos “O”, empaquetaduras, etc.) al desarmar y armar los componentes del sistema hidráulico. Siempre se recomienda instalar elementos selladores nuevos.

Al instalar tubos metálicos en el sistema hidráulico, apriete todos los pernos con los dedos. Después, apriete los pernos del extremo rígido, del extremo ajustable y de las escuadras de montaje, en ese orden. Después de haber instalado los tubos, instale las mangueras. Conecte ambos extremos de la manguera apretando sus pernos con los dedos. Coloque la manguera de modo que no roce contra la máquina ni contra otra manguera y que tenga un mínimo de dobleces y retorcidas. Apriete los pernos de ambos acoplamientos.

Debido a los métodos usados para fabricarlas, todas las mangueras hidráulicas tienen una curvatura natural. La manguera debe instalarse de modo que todos sus dobleces queden en el mismo sentido de esta curvatura.

En caso de usar mangueras de repuesto con adaptadores de vástago angulado reutilizables, es necesario tomar en cuenta la curvatura de la manguera al armar y colocar el vástago angulado.

Rotulación de piezas durante el desarmado

Cuando se retire o desconecta un grupo de alambres o cables, rotule cada uno de ellos para asegurar que se identifiquen correctamente durante el armado.

Cuando se retiren suplementos, átelos juntos e identifique la posición en la cual se instalan. Mantenga los suplementos limpios y en posición plana hasta volverlos a instalar.

Precauciones para la soldadura

Los componentes sensibles de los sistemas de computadora del camión y del sistema eléctrico de la grúa pueden dañarse cuando se efectúan soldaduras en el camión o grúa. Tome las precauciones dadas a continuación:

- Desconecte los cables de la batería del camión.
- Conecte la pinza de puesta a tierra de la máquina de soldar lo más cerca posible a la zona a ser soldada.

SUSTITUCIÓN DE PIEZAS

Las piezas que encuentre dañadas o fuera de tolerancia cuando realice el mantenimiento se deben reemplazar. Si desea adquirir repuestos, comuníquese con el departamento de repuestos de Manitowoc Crane Care.

SERVICIO

Recomendaciones para el aceite hidráulico

Para obtener información sobre las especificaciones de aceite hidráulico, consulte Lubricación, página 8-1.
Vaciado y enjuague

Si un componente se ha cambiado debido a una falla que pueda permitir que las partículas de metal o abrasivas entren al sistema, todos los sistemas se deben revisar cuidadosamente, vaciar y enjuagar.

1. Retire el tapón de vaciado del depósito. Espere aproximadamente tres minutos después de que el aceite hidráulico deje de fluir de la lumbrera de vaciado a las paredes laterales para vaciar.

2. Limpie e instale el tapón del depósito y llénelo con una mezcla uniforme (50/50) de combustible y aceite hidráulico limpio.

3. Accione varias veces todas las funciones de la grúa. Después vuelva a colocar la grúa en su posición de almacenamiento y apague el motor.

4. Retire el tapón de vaciado del depósito y vacíe el depósito. Limpie e instale el tapón de vaciado y llene el depósito con aceite hidráulico limpio.

NOTA:
Conecte una manguera de vaciado en lugar de la manguera de retorno que se desconectó para poder vaciar el aceite hidráulico en un recipiente y desecharlo de manera apropiada.

5. Desconecte la línea de retorno del cilindro de elevación y eleve la pluma a su elevación máxima.

6. Conecte la línea de retorno del cilindro y baje la pluma a su posición de almacenamiento. Recargue el nivel del aceite hidráulico del depósito según se requiera.

7. Desconecte la línea de retorno de un cilindro de extensión de estabilizador y extienda completamente el estabilizador.

8. Conecte la línea de retorno del estabilizador y retraiga el estabilizador. Recargue el nivel del aceite hidráulico del depósito según sea necesario.

9. Repita los pasos 7 y 8 para los estabilizadores restantes.

PRECAUCIÓN
Las líneas de suministro de aceite hidráulico deberán estar conectadas a los cilindros cuando se enjuaga el sistema.

NOTA: Conecte una manguera de vaciado en lugar de la manguera de retorno que se desconectó para poder vaciar el aceite hidráulico en un recipiente y desecharlo de manera apropiada.

10. Desconecte las líneas de retorno desde un par de cilindros de gato de estabilizadores y coloque los cilindros en la posición más baja posible.

11. Conecte las líneas de retorno y levante los cilindros de gato de estabilizadores a su posición de almacenamiento. Recargue el nivel del aceite hidráulico del depósito según sea necesario.

12. Repita los pasos 10 y 11 para los dos cilindros de estabilizador restantes.

13. Desconecte la línea de retorno del cilindro telescópico y extienda la pluma completamente.

14. Conecte la línea de retorno y retraiga la pluma. Recargue el nivel del aceite hidráulico del depósito según sea necesario.

15. Desconecte la línea de retorno del motor del malacate y accione el malacate completamente en sentido de elevar.

16. Conecte la línea de retorno al motor del malacate y accione el malacate completamente en sentido de bajar y luego en sentido de elevar. Recargue el nivel del aceite hidráulico del depósito según sea necesario.

17. Desconecte una de las líneas del motor de giro y accione el motor en el sentido en el cual se moverá.

18. Conecte la línea al motor de giro y después accione el motor de giro en sentido opuesto hasta que la pluma quede centrada y orientada hacia la parte delantera de la máquina. Recargue el nivel del aceite hidráulico del depósito según sea necesario.

PRECAUCIÓN
Los aceites hidráulicos deberán tener especificaciones iguales, de lo contrario podría ocurrir la decoloración (apariencia lechosa).

PRECAUCIÓN
Las líneas de suministro de aceite hidráulico deberán estar conectadas a los cilindros cuando se enjuaga el sistema.

PRECAUCIÓN
Cuando vacíe los cilindros del estabilizador, siempre ponga a funcionar ya sea ambos cilindros delanteros o ambos cilindros traseros juntos para evitar retorcer la grúa.

PRECAUCIÓN
Cuando cambie el aceite hidráulico, revise de nuevo el nivel de aceite hidráulico del sistema después de un breve funcionamiento y agregue aceite hidráulico según sea necesario. Asegúrese de que la grúa esté nivelada y en el modo de conducción cuando esté llenando el sistema hidráulico. El sistema se debe llenar con todos los cilindros retraídos. Llene el depósito hasta la marca de lleno en la mirilla del depósito. Después de llenar el depósito, accione todos los circuitos y revise de nuevo la mirilla del depósito. Agregue aceite hidráulico según sea necesario.

Eliminación de aire del sistema hidráulico

El aire que entra junto con el aceite hidráulico normalmente se expulsa por medio de deflectores en el depósito hidráulico. Si se reemplaza un componente, cuando el nivel del depósito es muy bajo o cuando hay una fuga en la línea de aspiración de la bomba, puede entrar aire al sistema. El aire puede causar ruidos durante el funcionamiento de los motores hidráulicos de giro y del malacate. Revise el nivel del depósito hidráulico primero, si se producen ruidos durante el funcionamiento. Revise si hay fugas en las líneas de aspiración que van a las bombas.
Las fugas diminutas pueden ser difíciles de localizar. Si una fuga no se puede detectar fácilmente, utilice los siguientes métodos para buscarla:

- Selle todas las aberturas normales en el sistema hidráulico y en el depósito. Con un medio positivo para controlar la presión (como un regulador), presurice el sistema hidráulico a 13.8 a 27.6 kPa (2 a 4 psi) y revise todas las uniones y conectores para buscar evidencia de fugas. Una solución jabonosa aplicada a los conectores y juntas también puede ser útil para detectar fugas diminutas mientras presuriza el sistema. Elimine la presión, repare las fugas que encuentre y abra de nuevo las aberturas (como las ventilaciones) que cerró para realizar la inspección. Vuelva a llenar el depósito después de completar cualquier reparación o servicio. Accione todos los circuitos hidráulicos varias veces en ambos sentidos.
- Esta acción debe devolver cualquier aire atrapado al depósito, donde puede ser eliminado mediante los deflectores internos.

PELIGRO

Coloque la máquina sobre una superficie firme y coloque la pluma sobre la parte delantera de la máquina en los estabilizadores cuando se extienda la pluma a ángulos bajos.

- Para eliminar el aire atrapado en los cilindros telescópicos, baje la pluma por debajo de la posición horizontal y retráigala y extiéndala varias veces.
- Si el aire sigue atrapado, baje la pluma por debajo de la posición horizontal, extienda los cilindros telescópicos hasta donde resulte práctico y permita que la pluma permanezca en esta posición hasta el día siguiente. Esto permite que el aire atrapado llegue a la válvula de retención, de modo que al RETRAER la pluma a la mañana siguiente se fuerce el aire hacia el depósito. Asegure que la pluma se RETRAIGA (y no se EXTIENDA) primero durante la mañana. Si se EXTIENDE, se podría forzar el aire hacia un cilindro.

PELIGRO

Tenga sumo cuidado al sacar tapones o restricciones de un sistema hidráulico si se sospecha que el mismo tiene aire atrapado que pudiera estar a presión.

- El aire atrapado se puede eliminar ciclando los cilindros que tienen varillas húmedas. En algunos cilindros, se proporciona una lumbrera taponada en el extremo de la varilla para purgar el aire atrapado.

PELIGRO

No intente soltar adaptadores de líneas presurizadas ni cuando las bombas hidráulicas estén en marcha.

Descripción del sistema

El sistema hidráulico es de centro cerrado con compensación de presión. El sistema hidráulico de las grúas serie NBT40-1 consta de lo siguiente:

- Bomba hidráulica
- Válvula de control principal de cuatro secciones
- Colector de bloqueo de RCL
- Válvula de control de giro y del aire acondicionado
- Colectores de control de estabilizadores
- Depósito hidráulico con filtro
- Palancas de control remoto hidráulicas (HRC)
- Colector piloto
- Colector de control remoto por radio (opcional)
- Colector de circuito de herramienta (opcional)
- Colector de multiplicador de presión
- Colector de la bomba
- Colector del motor de giro (con opción de controles remotos)
- Adaptador giratorio hidráulico
- Enfriador de aceite hidráulico

Bomba hidráulica

La bomba hidráulica se monta directamente en la toma de fuerza (TDF) o en el chasis del camión. La bomba hidráulica tiene compensación de presión y suministra un caudal variable al sistema hidráulico en función de la velocidad del eje de la bomba y la demanda del sistema a través de la presión de la señal de detección de carga.

Válvula de control de sentido (DCV)

La válvula de control de sentido (DCV) se encuentra en la torretta y tiene cuatro secciones. La válvula de control de sentido (DCV) controla el malacate principal, el malacate auxiliar, la elevación y la telescopización.

- La sección uno regula las funciones de elevación y bajada de la pluma y contiene las válvulas de alivio de la lumbrera de trabajo para proteger al cilindro de elevación. El alivio de la elevación de la pluma es un alivio de dos etapas y el ajuste más bajo se usa solo para el funcionamiento de la configuración de elevación aérea.
La sección dos controla el malacate principal y contiene las válvulas de alivio de la lumbrera de trabajo para proteger el malacate principal.

La sección tres controla el cilindro telescópico y contiene las válvulas de alivio de la lumbrera de trabajo para proteger al cilindro de telescopización. Los alivios de extensión y retracción telescópica son alivios de dos etapas y el ajuste más bajo se usa solo para el funcionamiento de la configuración de elevación aérea.

La sección cuatro controla el malacate auxiliar y contiene las válvulas de alivio de la lumbrera de trabajo para proteger el malacate auxiliar.

Colector de bloqueo de RCL

El colector de bloqueo del RCL se encuentra en la torreta y desactiva las funciones de la grúa cuando el RCL detecta una condición de vuelco inminente. El colector inhabilita las funciones de elevación, bajada y extensión telescópica. Las funciones bloqueadas se vuelven a habilitar cuando se eliminan estas condiciones.

Válvula de control de giro y del aire acondicionado

La válvula de control de giro y el aire acondicionado se encuentra en la torreta y controla al motor de giro y el aire acondicionado. La válvula limita el caudal máximo en ambos sentidos y tiene válvulas de alivio internas. La válvula tiene centro abierto que retorna el aceite al depósito cuando la válvula se encuentra en punto muerto.

Colectores de control de estabilizadores

Los colectores de control de estabilizadores regulan las funciones de los estabilizadores.

Colector de estabilizadores delanteros

El colector de estabilizadores delanteros se encuentra en la caja de estabilizadores delanteros y controla los circuitos de extensión y retracción de los estabilizadores delanteros y traseros y la selección de las vigas de estabilizadores delanteros y los gatos verticales. El colector de estabilizadores delanteros regula la selección de componentes de los estabilizadores delanteros.

Colector de control de estabilizadores traseros

El colector de estabilizadores traseros se monta debajo de la caja de estabilizadores traseros. El colector de estabilizadores traseros regula la selección de los componentes de los estabilizadores traseros y la selección de las vigas de estabilizadores traseros y los gatos verticales.

Depósito hidráulico con filtro

El depósito hidráulico se conecta a la parte superior del bastidor del camión en una caja de torsión de longitud estándar o a la parte superior de la caja de torsión en caso de una caja de torsión de longitud extendida (vea la Figura 2-6). El aceite del depósito hidráulico se emplea como suministro para el sistema hidráulico cuando se extienden los cilindros hidráulicos. Existe una caja con elemento de filtro que está instalada en la parte superior del depósito hidráulico y filtra el aceite hidráulico de retorno.

Palancas de control remoto hidráulicas (HRC)

Las funciones de la grúa son controladas por palancas de control remoto hidráulicas (HRC) en el apoyabrazos del asiento del operador. Las palancas de control funcionan con presión piloto que se aplica a los vástagos en cada lado de los carretes de válvulas para desplazar los carretes en el sentido deseado.

Colector piloto

El colector piloto se encuentra en la torreta y controla la habilitación de las palancas de control remoto hidráulicas (HRC), habilita el sistema de aire acondicionado hidráulico, suelta el freno aplicado por resorte en el mecanismo de giro y habilita la configuración de elevación aérea (opcional).

Colector de control remoto por radio (opcional)

El colector de control remoto por radio se encuentra detrás en una caja de montaje separada. Este colector permite que la máquina sea operada desde un control remoto inalámbrico por radio, que provee señales eléctricas a los solenoides en este colector y, a su vez, opera las funciones principales de la grúa y aéreas.

Colector de circuito de herramienta (opcional)

El colector de circuito de herramienta se encuentra en la parte trasera de la torreta, cerca del pasador de pivote de la pluma. Este colector, cuando está activado, provee caudal y presión a una función auxiliar a través del carrete de manguera hidráulica doble montado al lado de la pluma base. Normalmente está equipado junto con un colector opcional de multiplicador de presión.

Colector de multiplicador de presión (opcional)

El colector de multiplicador de presión se encuentra en la plataforma de personal y se utiliza junto con el circuito de herramienta hidráulica y las opciones de carrete de manguera hidráulica. Cuando está habilitado, este colector provee caudal a una herramienta a presiones y caudales variables que se ajustan a través de la palanca de control del colector. Para obtener más información, consulte el Manual del multiplicador N/P 9828221048.
Colector de la bomba
Este colector se encuentra directamente en la bomba de émbolos axiales y provee un circuito hidráulico de presión reducida para usar en los colectores de control de estabilizadores.

Colector del motor de giro (con opción de controles remotos)
Este colector se encuentra directamente en el motor de giro y provee el mismo funcionamiento de giro libre que el colector del motor de giro estándar, con capacidades adicionales cuando la máquina se opera con controles remotos por radio. Cuando se utilizan los controles remotos, este colector convierte la función de giro en un giro estándar similar al proporcionado por la válvula equilibradora, y no requiere el uso del pedal de freno de giro ni la función de giro libre. Cuando se activa la función de giro en el control remoto, el motor comienza a girar. Cuando esta palanca se retorna al punto muerto, se detiene el caudal al motor de giro y no se produce deriva ni giro libre.

Adaptador giratorio hidráulico
El adaptador giratorio hidráulico se encuentra dentro de la torreta en el centro de rotación y provee 360° de rotación continua en cualquier dirección.

Enfriador de aceite hidráulico
El enfriador de aceite hidráulico se encuentra delante del depósito hidráulico montado en el descanso de la pluma. El aceite hidráulico caliente que regresa al depósito hidráulico fluye por una válvula de derivación hasta el enfriador de aceite hidráulico y regresa al depósito de hidráulico. La válvula de derivación del enfriador de aceite hidráulico evita daño al enfriador de aceite hidráulico si se tapa durante el funcionamiento. Existe un ventilador eléctrico montado en el enfriador de aceite hidráulico que se controla con un interruptor de temperatura instalado al lado del enfriador de aceite hidráulico.

VÁLVULAS HIDRÁULICAS
Esta sección proporciona información descriptiva para todas las válvulas hidráulicas que se utilizan en esta grúa. Para una lista de todas las válvulas, los circuitos en los cuales se utilizan y su ubicación física, vea la Tabla 2-2. Vea la Figura 2-1 para la ubicación de las válvulas de control y los colectores. La descripción de cada válvula corresponde a la válvula individual. Para información sobre cómo funciona cada válvula en los circuitos individuales, consulte la descripción y los procedimientos de funcionamiento de ese circuito.

Tabla 2-2. Válvulas hidráulicas

<table>
<thead>
<tr>
<th>Nombre de la válvula</th>
<th>Circuito en que se utiliza</th>
<th>Ubicación física</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válvula de control de sentido</td>
<td>Elevación/telescopización/malacates</td>
<td>Dentro de la torreta</td>
</tr>
<tr>
<td>Palancas de control remoto hidráulicas</td>
<td>Elevación Telescopización Malacate principal Giro</td>
<td>Apoyabrazos del asiento de cabina (2)</td>
</tr>
<tr>
<td>Válvula de pedal de freno de giro</td>
<td>Giro</td>
<td>Piso de cabina de grúa</td>
</tr>
<tr>
<td>Colector de freno de giro</td>
<td>Giro</td>
<td>Dentro de la torreta</td>
</tr>
<tr>
<td>Colector del motor de giro</td>
<td>Giro</td>
<td>En motor de giro</td>
</tr>
<tr>
<td>Válvulas de retención</td>
<td>Elevación Telescopización</td>
<td>Bloque de lumbreras en cilindro</td>
</tr>
<tr>
<td>Válvula de derivación</td>
<td>Circuito de retorno</td>
<td>Una en paralelo con el enfriador de aceite Una en paralelo con el filtro de aceite</td>
</tr>
<tr>
<td>Colector de control de estabilizadores delanteros</td>
<td>Estabilizador</td>
<td>Caja de estabilizadores delanteros</td>
</tr>
<tr>
<td>Colector de control de estabilizadores traseros</td>
<td>Estabilizador</td>
<td>Caja de estabilizadores traseros</td>
</tr>
<tr>
<td>Válvula de retención activada por piloto</td>
<td>Estabilizadores</td>
<td>Bloque de lumbreras de cada cilindro de gato (4)</td>
</tr>
<tr>
<td>Válvula de alivio del estabilizador delantero sencillo</td>
<td>Estabilizador</td>
<td>Estabilizador delantero central</td>
</tr>
<tr>
<td>Válvula de control de caudal</td>
<td>Estabilizadores</td>
<td>Caja de estabilizadores delanteros</td>
</tr>
<tr>
<td>Pedal de telescopización</td>
<td>Opcional — con malacate aux.</td>
<td>Piso de la cabina</td>
</tr>
</tbody>
</table>
Ubicaciones de las válvulas hidráulicas

<table>
<thead>
<tr>
<th>Art.</th>
<th>Componente</th>
<th>Art.</th>
<th>Componente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Colector de circuito de herramienta</td>
<td>5</td>
<td>Colector de bloqueo de RCL</td>
</tr>
<tr>
<td>2</td>
<td>Válvula de control de giro y del aire acondicionado</td>
<td>6</td>
<td>Válvula de retención</td>
</tr>
<tr>
<td>3</td>
<td>Válvula de control de sentido (DCV)</td>
<td>7</td>
<td>Colector del motor de giro estándar</td>
</tr>
<tr>
<td>4</td>
<td>Colector piloto (alimentación de la grúa/AA/freno de giro/funciones aéreas)</td>
<td>8</td>
<td>Colector del motor de giro de modo doble (si lo tiene)</td>
</tr>
</tbody>
</table>

FIGURA 2-1
<table>
<thead>
<tr>
<th>Art.</th>
<th>Componente</th>
<th>Art.</th>
<th>Componente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Multiplicador de presión (si lo tiene, ubicado en la plataforma de elevación aérea)</td>
<td>6</td>
<td>Válvula del freno de giro</td>
</tr>
<tr>
<td>2</td>
<td>Controladores remotos (si los tiene)</td>
<td>7</td>
<td>Colector de estabilizadores delanteros</td>
</tr>
<tr>
<td>3</td>
<td>Colector de estabilizadores traseros</td>
<td>8</td>
<td>Válvula reductora de presión de estabilizadores</td>
</tr>
<tr>
<td>4</td>
<td>Palanca de control hidráulica (X 2)</td>
<td>9</td>
<td>Colector de la bomba</td>
</tr>
<tr>
<td>5</td>
<td>Válvula de telescopización (si la tiene)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURA 2-2
Válvula de control de sentido (con malacate aux.) — Válvula de 4 secciones

![Diagrama de válvula de control de sentido](https://via.placeholder.com/150)

FIGURA 2-3

<table>
<thead>
<tr>
<th>Art.</th>
<th>Descripción</th>
<th>Art.</th>
<th>Descripción</th>
<th>Art.</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Válvula de alivio de pluma - elevación</td>
<td>6</td>
<td>Válvula de alivio de malacate aux. - bajada</td>
<td>11</td>
<td>Lumbrera de manómetro</td>
</tr>
<tr>
<td>2</td>
<td>Válvula de alivio de malacate principal - elevación</td>
<td>7</td>
<td>Válvula de alivio de cil. telescópico - retracción</td>
<td>12</td>
<td>Purga de detección de carga</td>
</tr>
<tr>
<td>3</td>
<td>Válvula de alivio de cil. telescópico - extensión</td>
<td>8</td>
<td>Válvula de alivio de malacate principal - bajada</td>
<td>13</td>
<td>Presión de espera</td>
</tr>
<tr>
<td>4</td>
<td>Válvula de alivio de malacate aux. - elevación</td>
<td>9</td>
<td>Válvula de alivio de pluma - bajada</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Válvula de retención (cuatro puntos)</td>
<td>10</td>
<td>Suministro piloto</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Salida - lumbrera del adaptador giratorio</td>
<td>H</td>
<td>Cil. telescópico - retracción</td>
<td>J1</td>
<td>Taponada</td>
</tr>
<tr>
<td>B</td>
<td>Entrada - lumbrera del adaptador giratorio</td>
<td>J</td>
<td>Malacate principal - elevación</td>
<td>J2</td>
<td>Manguera - Válvula de descarga B2</td>
</tr>
<tr>
<td>C</td>
<td>Cilindro de elevación de la pluma - Extensión</td>
<td>K</td>
<td>Malacate principal - bajada</td>
<td>J3</td>
<td>Taponada</td>
</tr>
<tr>
<td>D</td>
<td>Cilindro de elevación de la pluma - Retracción</td>
<td>L</td>
<td>Lumbrera piloto de válvula de alivio de 2 etapas</td>
<td>X1</td>
<td>Manguera - Válvula de descarga B5</td>
</tr>
<tr>
<td>E</td>
<td>Malacate aux. - elevación</td>
<td>B1</td>
<td>Manguera - Válvula de descarga B4</td>
<td>X2</td>
<td>Manguera - Válvula de descarga B6</td>
</tr>
<tr>
<td>F</td>
<td>Malacate auxiliar - bajada</td>
<td>B2</td>
<td>Manguera - Válvula de descarga B3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>Cil. telescópico - extensión</td>
<td>B4</td>
<td>Manguera - Válvula de descarga B1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Válvula de control de giro

FIGURA 2-4

La figura muestra una válvula de control de giro con los siguientes conectores:
- Entrada: X3, J4
- Salida: N, P, R, T

Lista de artículos de válvula de control de giro y lumbrera/manguera

<table>
<thead>
<tr>
<th>Artículo/lumbrera</th>
<th>Descripción</th>
<th>Artículo/lumbrera</th>
<th>Descripción</th>
<th>Artículo/lumbrera</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Válvula de alivio de giro - Motor de giro</td>
<td>J5</td>
<td>HRC - Giro 1 (Der)</td>
<td>N</td>
<td>Manguera - Presión de A/A</td>
</tr>
<tr>
<td>2</td>
<td>Válvula de alivio de giro - Motor de giro</td>
<td>X3</td>
<td>Manguera - retorno al depósito</td>
<td>P</td>
<td>Manguera - Motor de giro</td>
</tr>
<tr>
<td>3</td>
<td>Lumbrera de detección de carga - Motor de giro</td>
<td>X4</td>
<td>Manguera - Colector piloto A3</td>
<td>R</td>
<td>Salida - Adaptador giratorio 4A</td>
</tr>
<tr>
<td>4</td>
<td>Válvula de alivio de A/A</td>
<td>L</td>
<td>Manguera - Retorno de A/A</td>
<td>T</td>
<td>Entrada - Adaptador giratorio 3A</td>
</tr>
<tr>
<td>J4</td>
<td>HRC - Giro 2 (Izq)</td>
<td>M</td>
<td>Manguera - Motor de giro</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROCEDIMIENTOS DE AJUSTE DE PRESIÓN DE VÁLVULAS DE ALIVIO

Descripción

Las válvulas del sistema hidráulico deben estar correctamente ajustadas para proteger un componente, circuito o sistema contra presiones excesivas (válvulas de alivio) y para asegurar que los componentes reciban la presión y el caudal apropiados.

Mantenimiento

Las válvulas de alivio se revisan y ajustan haciendo que el circuito específico llegue al límite de presión indicado (presión de calada). En este punto se abre la válvula de alivio para permitir el retorno de aceite hidráulico al depósito. Los circuitos de motores hidráulicos pueden calarse al bloquear la rotación del eje del motor antes de accionar la válvula de control. Los circuitos de cilindros pueden calarse extendiendo o retrayendo el cilindro al límite de su recorrido.

El ajuste correcto de las válvulas de alivio es imprescindible para que el circuito hidráulico correspondiente funcione correctamente. Cuando sea necesario efectuar ajustes de presión, éstos deberán ser realizados únicamente por técnicos calificados que utilicen el equipo correcto para ello.

NOTA: Utilice un manómetro preciso de 0 a 345 bar (0 a 5000 psi) para ajustar las válvulas de alivio. Para ajustar una válvula de alivio, gire el tornillo de ajuste (hacia adentro para aumentar o hacia afuera para disminuir) hasta alcanzar el valor apropiado. Suelte la palanca de control después de tomar cada indicación y mientras hace los ajustes. Cuando se haya obtenido el ajuste de presión apropiado, apriete la contratuerca del tornillo de ajuste y vuelva a revisar la presión.

Únicamente se necesita retener la presión hidráulica el tiempo suficiente (por lo general algunos segundos) para obtener una indicación precisa. No sobrecargue los circuitos hidráulicos por períodos prolongados.

La temperatura del aceite del depósito debe ser de 60°C a 71°C (140°F a 160°F).

PRECAUCIÓN

No apriete excesivamente la contratuerca ni el tornillo de ajuste.

No mantenga la válvula de alivio abierta durante más de un minuto a la vez.

Preparación

• Haga funcionar el motor diésel hasta que la temperatura del aceite hidráulico alcance un mínimo de 49°C a 60°C (120°F a 140°F).

• Apague el motor.

PELIGRO

No intente soltar los adaptadores de líneas presurizadas ni cuando las bombas hidráulicas estén en marcha, ya que esto podría causar lesiones al personal.
Ajustes de presión de válvulas de alivio

<table>
<thead>
<tr>
<th>Válvula a ajustarse</th>
<th>Ajuste de presión</th>
<th>Tolerancia</th>
<th>Ubicación de ajuste de válvula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alivio de retracción de telescopización (con elevación aérea)</td>
<td>112 bar (1625 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Alivio de retracción de telescopización (sin elevación aérea)</td>
<td>155 bar (2250 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Alivio de extensión de telescopización (con elevación aérea)</td>
<td>131 bar (1900 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Alivio de extensión de telescopización (sin elevación aérea)</td>
<td>186 bar (2700 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Presión piloto</td>
<td>25.8 bar (375 psi)</td>
<td>± 4 bar (50 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Alivio de estabilizadores (válvula de control de caudal)</td>
<td>207 bar (3000 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Caja de estabilizadores delanteros</td>
</tr>
<tr>
<td>Alivio de elevación de pluma (con elevación aérea)</td>
<td>195 bar (2830 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Alivio de elevación de pluma (sin elevación aérea)</td>
<td>310 bar (4500 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Alivio de bajada de pluma (con y sin elevación aérea)</td>
<td>76 bar (1100 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Elevación y bajada de malacate principal/auxiliar</td>
<td>333 bar (4825 psi)</td>
<td>± 2 bar (25 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Alivio del aire acondicionado</td>
<td>259 bar (3750 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Alivio de válvula de giro (sentido horario/contrahorario)</td>
<td>207 bar (3000 psi)</td>
<td>± 14 bar (200 psi)</td>
<td>Válvula de control de giro</td>
</tr>
<tr>
<td>Alivio de bajada del malacate principal y malacate auxiliar</td>
<td>333 bar (4825 psi)</td>
<td>± 2 bar (25 psi)</td>
<td>Válvula de sentido principal</td>
</tr>
<tr>
<td>Extensión del estabilizador delantero (si lo tiene)</td>
<td>34 bar (500 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Estabilizador delantero</td>
</tr>
<tr>
<td>Retracción del estabilizador delantero (si lo tiene)</td>
<td>121 bar (1750 psi)</td>
<td>± 7 bar (100 psi)</td>
<td>Estabilizador delantero</td>
</tr>
<tr>
<td>Presión de circuito de herramienta</td>
<td>124 bar (1800 psi)</td>
<td>± 4 bar (50 psi)</td>
<td>Válvula de circuito de herramienta</td>
</tr>
</tbody>
</table>
Revisión de presión del sistema

Elevación y bajada de malacate

Vea la Figura 2-5 para el procedimiento siguiente.

1. Con el motor apagado, instale un acoplador de desconexión rápida para diagnóstico y revisión de presión (Parker PD240) con manómetro en la boquilla de prueba de la lumbrera del manómetro GP de la válvula de control de sentido (DCV).

2. Desconecte los dos tubos de las lumbreras de trabajo (1) en los conectores de tabique (2) y tape los conectores de tabique.

3. Arranque el motor y hágalo funcionar a ralentí. Mueva poco a poco la función de elevación de malacate hasta llegar al final de su carrera y manténgala allí. Acelere lentamente el motor al máximo. La indicación en GP debe ser 333 ± 2 bar (4825 ± 25 psi). Si la presión no está dentro de las especificaciones, ajuste el alivio LS hacia adentro para aumentar la presión o hacia afuera para disminuir la presión hasta que se logre la indicación.

4. Arranque el motor y hágalo funcionar a ralentí. Mueva poco a poco la función de bajada de malacate hasta llegar al final de su carrera y manténgala allí. Acelere lentamente el motor al máximo. La indicación en GP debe ser 333 ± 2 bar (4825 ± 25 psi). Si la presión no está dentro de las especificaciones, ajuste el alivio LS hacia adentro para aumentar la presión o hacia afuera para disminuir la presión hasta que se logre la indicación.

5. Apague el motor y desconecte los acopladores de diagnóstico.

6. Retire las tapas de los conectores de tabique y conecte los tubos de las lumbreras de trabajo a los conectores de tabique.

Elevación y bajada de la pluma

Vea la Figura 2-3 para el procedimiento siguiente.

1. Con el motor apagado, instale un acoplador de desconexión rápida para diagnóstico y revisión de presión (Parker PD240) con manómetro en la boquilla de prueba de la lumbrera del manómetro GP de la válvula de control de sentido (DCV).

NOTA: Si el cilindro de elevación no está conectado, asegúrese de que las mangueras del cilindro estén tapadas.

2. Arranque el motor y hágalo funcionar a ralentí. Para verificar la bajada, mueva poco a poco la función de bajada hasta llegar al final de la carrera del cilindro y manténgala allí. Acelere lentamente el motor al máximo. La indicación en GP debe ser 76 ± 7 bar (1100 ± 100 psi). Si la presión no está dentro de las especificaciones, ajuste el alivio de bajada hacia adentro para aumentar la presión o hacia afuera para disminuir la presión hasta que se logre la indicación.

NOTA: Si la máquina no está equipada con la opción de elevación aérea, continúe con el paso 3.

3. Arranque el motor y hágalo funcionar a ralentí. Para verificar la elevación, mueva poco a poco la función de elevación hasta llegar al final de la carrera del cilindro y manténgala allí. Acelere lentamente el motor al máximo. La indicación en GP debe ser 195 ± 7 bar (2830 ± 100 psi). Si la presión no está dentro de las especificaciones, ajuste el alivio de bajada hacia adentro para aumentar la presión o hacia afuera para disminuir la presión hasta que se logre la indicación.

4. Arranque el motor y hágalo funcionar a ralentí. Para verificar la elevación, mueva poco a poco la función de elevación hasta llegar al final de la carrera del cilindro y manténgala allí. Acelere lentamente el motor al máximo. La indicación en GP debe ser 310 ± 7 bar (4500 ± 100 psi). Si la presión no está dentro de las especificaciones, ajuste el alivio de bajada hacia adentro para aumentar la presión o hacia afuera para disminuir la presión hasta que se logre la indicación.

5. Apague el motor y desconecte los acopladores de diagnóstico.
Retracción y extensión de telescopización

Vea la Figura 2-3 para el procedimiento siguiente.

NOTA: Las mangueras del cilindro telescópico se pueden desconectar y tapar para este procedimiento.

Si la opción de elevación aérea no está instalada, omita los pasos 2 y 4.

1. Con el motor apagado, instale un acoplador de desconexión rápida para diagnóstico y revisión de presión (Parker PD240) con manómetro en la boquilla de prueba de la lumbrera del manómetro GP de la válvula de control de sentido (DCV).

2. Arranque el motor y hágalo funcionar a ralentí. Para las grúas equipadas con la opción de elevación aérea, seleccione el número 2 en la pantalla de configuración del RCL. Mueva poco a poco la función de extensión telescópica hasta llegar al final de la carrera del cilindro y manténgala allí. Acelere lentamente el motor al máximo. La indicación en GP debe ser 131 ± 7 bar (1900 ± 100 psi). Si la presión no está dentro de las especificaciones, ajuste el alivio de extensión telescópica de dos etapas hacia adentro para aumentar la presión o hacia afuera para disminuir la presión hasta que se logre la indicación.

3. Arranque el motor y hágalo funcionar a ralentí. Para una grúa estándar, seleccione el número 1 de la pantalla de configuración del RCL. Mueva poco a poco la función de extensión telescópica hasta llegar al final de la carrera del cilindro y manténgala allí. Acelere lentamente el motor al máximo. La indicación en GP debe ser 186 ± 7 bar (2700 ± 100 psi). Si la presión no está dentro de las especificaciones, ajuste el alivio de extensión telescópica de dos etapas hacia adentro para aumentar la presión o hacia afuera para disminuir la presión hasta que se logre la indicación.

4. Arranque el motor y hágalo funcionar a ralentí. Para las grúas equipadas con la opción de elevación aérea, seleccione el número 2 en la pantalla de configuración del RCL. Mueva poco a poco la función de retracción telescópica hasta llegar al final de la carrera del cilindro y manténgala allí. Acelere lentamente el motor al máximo. La indicación en GP debe ser 112 ± 7 bar (1625 ± 100 psi). Si la presión de alivio no está dentro de las especificaciones, ajuste el alivio de retracción telescópica de dos etapas hacia adentro para aumentar la presión o hacia afuera para disminuir la presión hasta que se logre la indicación.

5. Arranque el motor y hágalo funcionar a ralentí. Para una grúa estándar, seleccione el número 1 de la pantalla de configuración del RCL. Mueva poco a poco la función de retracción telescópica hasta llegar al final de la carrera del cilindro y manténgala allí. Acelere lentamente el motor al máximo. La indicación en GP debe ser 155 ± 7 bar (2250 ± 100 psi). Si la presión de alivio no está dentro de las especificaciones, ajuste el alivio de extensión telescópica de dos etapas hacia adentro para aumentar la presión o hacia afuera para disminuir la presión hasta que se logre la indicación.

6. Apague el motor y desconecte los acopladores de diagnóstico.

7. Retire las tapas y vuelva a conectar las mangueras del cilindro de telescopización si se desconectaron.

Estabilizadores

1. Con el motor apagado, instale un acoplador de desconexión rápida para diagnóstico y revisión de presión (Parker PD240) con manómetro en la boquilla de prueba de la lumbrera del manómetro GP de la válvula de control de sentido (DCV).

2. Arranque el motor y hágalo funcionar a ralentí. Presione el botón de extender o retraer, luego, lentamente, acelere lentamente el motor al máximo. La indicación en GP debe ser 207 ± 7 bar (3000 ± 100 psi). Si la presión de alivio no está dentro de las especificaciones, ajuste la válvula reductora de presión de estabilizadores (8, Figura 2-2) hacia adentro para aumentar la presión o hacia afuera para disminuir la presión hasta que se logre la indicación.

3. Apague el motor y desconecte los acopladores de diagnóstico.

Alivio de válvula de giro

1. Con el motor apagado, instale un acoplador de desconexión rápida para diagnóstico y revisión de presión (Parker PD240) con manómetro en la boquilla de prueba de la lumbrera del manómetro GP de la válvula de control de sentido (DCV) (vea la Figura 2-3).

NOTA: No se confíe del freno de giro para retener la torreta en su lugar cuando revise las presiones de alivio, puesto que la torreta puede empujar suficientemente para vencer la fuerza de retención del freno. Siempre revise las presiones quitando y tapando las mangueras hidráulicas al motor de giro.

2. Retire las mangueras del motor de giro, conecte ambas mangueras y tape las lumbreras del motor de giro.

3. Arranque el motor y hágalo funcionar a ralentí. Mueva poco a poco la función de giro a la derecha hasta llegar al final de la palanca de control y manténgala allí. Acelere lentamente el motor al máximo. La indicación en GP debe ser 207 ± 14 bar (3000 ± 200 psi). Si la presión de alivio no está dentro de las especificaciones, reemplace la válvula de alivio en la válvula de giro/aire acondicionado.

4. Apague el motor y desconecte los acopladores de diagnóstico.

5. Sustituya la(s) válvula(s) de alivio de giro en la válvula de control de giro (vea la Figura 2-4) si la presión medida no está dentro del valor especificado.
Estabilizador delantero sencillo (SFO) (si lo tiene)

1. Con el motor apagado, instale un acoplador de desconexión rápida para diagnóstico y revisión de presión (Parker PD240) con manómetro en la boquilla de prueba de la lumbrera del manómetro GP de la válvula de control de sentido (DCV) (vea la Figura 2-2.)

2. Arranque el motor y hágalo funcionar a ralentí. Extienda el estabilizador delantero central hasta que toque el suelo y sostenga el interruptor en la posición de extensión. Acelere lentamente el motor al máximo. La indicación en GP debe ser 34 ± 7 bar (500 ± 100 psi). Si la presión de alivio no está dentro de las especificaciones, reemplace la válvula de alivio en la válvula del SFO.

3. Arranque el motor y hágalo funcionar a ralentí. Retraiga el SFO hasta que el cilindro esté al final de su carrera y sostenga el interruptor en la posición de retracción. Acelere lentamente el motor al máximo. La indicación en GP debe ser 121 ± 7 bar (1750 ± 100 psi). Si la presión de alivio no está dentro de las especificaciones, reemplace la válvula de alivio en la válvula del estabilizador delantero.

4. Apague el motor y desconecte los acopladores de diagnóstico.

Depósito hidráulico y filtro

Vea la Figura 2-6 para el procedimiento siguiente.

El depósito hidráulico (2) se conecta a la parte superior del bastidor del camión en una caja de torsión de longitud estándar o a la parte superior de la caja de torsión en caso de una caja de torsión de longitud extendida. El depósito de acero tiene un filtro de aceite hidráulico de flujo pleno, montado internamente, y deflectores incorporados que ayudan a enfriar el aceite hidráulico y a evitar la formación de espuma.

El aceite hidráulico fluye a través de la línea de aspiración en la parte inferior del depósito a la bomba hidráulica. La mayor parte del caudal de retorno pasa a través del colector de filtro (5) en la parte superior del depósito. Las líneas de retorno que van directamente hacia el depósito (en lugar de pasar por el filtro) son las líneas de vaciado de la lumbrera 1 del adaptador giratorio provenientes de la superestructura, el vaciado de la caja de la bomba y las líneas de retorno de estabilizadores.

Un tapón de vaciado magnético (11) en la parte interior del depósito recolecta todas las partículas de metal del aceite hidráulico.

Una mirilla del nivel de aceite hidráulico (17) se encuentra en el lado del depósito para indicar el nivel de aceite hidráulico.

Una tapa de llenado en la parte superior izquierda del depósito se usa para llenar el depósito. La tapa de llenado (7) incluye un colador para recolectar los contaminantes y empaquetaduras para impedir las fugas.

Un respiradero (3) se encuentra en la parte superior central del depósito hidráulico para permitir que el aire entre o salga del depósito. El respiradero debe mantenerse limpio para evitar que el depósito sufra daños.

Una cubierta de acceso grande (4) en la parte superior del depósito proporciona acceso para limpieza. La cubierta se fija a la parte superior del depósito con pernos y tiene una empaquetadura para evitar las fugas. El agujero de acceso también se puede utilizar para llenar el depósito después de que se ha vaciado por completo.

El filtro de aceite hidráulico se encuentra en el depósito y se emperna a la parte superior del depósito. La caja del filtro contiene un elemento de filtro reemplazable (10).

Un indicador conectado al colector de filtro indica el nivel de restricción (obstrucción) del elemento de filtro. Cuando la contrapresión causada por un elemento de filtro sucio excede de 103 kPa (15 psi), la función de derivación del colector del filtro permite que el aceite hidráulico derive al filtro y fluya hacia el depósito.
Sustitución del filtro hidráulico

Vea la Figura 2-6 para los pasos siguientes.

El filtro se monta en el depósito de aceite y tiene un elemento sustituible.

El mantenimiento del filtro se debe llevar a cabo sustituyendo los elementos por repuestos marca National Crane en los intervalos recomendados para asegurar que la garantía permanezca vigente.

Retiro del elemento

PELIGRO

Asegúrese de que el sistema hidráulico esté desactivado y sin presión.

1. Apague el motor diésel.
2. Elimine cualquier suciedad del conjunto de colector del filtro (5).
3. Suelte los seis pernos (6) que fijan la tapa del filtro (7) al colector del filtro.
4. Gire la tapa del filtro para destrabarla y retírela.
5. Retire el elemento del filtro (10) del tazón del filtro (9).
6. Asegúrese de que el nuevo elemento de filtro sea el correcto comparando su número de pieza con el número de pieza del elemento de filtro viejo.
7. Deseche el elemento de filtro usado.

Instalación del elemento

1. Instale el nuevo elemento de filtro en el tazón del filtro (9).
2. Instale la tapa del filtro (7) y gírela para trabarla en su lugar.
3. Apriete los seis pernos (6) para asegurar la tapa del filtro.
4. Active el sistema hidráulico y revise si hay fugas. Efectúe las reparaciones según se necesite.
Enfriador de aceite hidráulico

Hay un enfriador de aceite hidráulico (4, Figura 2-7) ubicado en el apoyo de la pluma (7). El circuito de retorno del enfriador de aceite hidráulico se encuentra paralelo con el circuito de retorno del depósito (6). Los circuitos de entrada del enfriador de aceite hidráulico (2) y de retorno/salida (3) pasan a través del bloque de derivación (5) en la parte superior del depósito de hidráulico (1). Una válvula de retención de 206 kPa (30 psi) en el bloque de derivación regula el caudal a través del enfriador de aceite. Cuando el aceite hidráulico está frío, la mayor parte del aceite retorna directamente al depósito. A medida que el aceite se calienta y se torna más delgado, más aceite pasa por el enfriador.

NOTA: Un sensor de temperatura ubicado en el adaptador giratorio hidráulico (lumbrera 4B) supervisa la temperatura del aceite hidráulico e ilumina una luz en la consola de la cabina de la grúa cuando la temperatura llega a 82°C (180°F).

El ventilador del enfriador de aceite hidráulico (9) está controlado por el relé del enfriador de aceite (Vea “Módulo del VEC” en la página 3-9) en el módulo del centro eléctrico del vehículo (VEC) (10). Para acceder al relé, retire el tablero de acceso del costado de la caja. Un interruptor de temperatura ubicado en el núcleo del enfriador activa el relé del ventilador cuando la temperatura del aceite hidráulico alcanza 49°C (120°F). El interruptor está conectado al armés del enfriador de aceite hidráulico (8) en la lumbrera del sensor de temperatura.

NOTA: Si ocurre una avería en el sensor de temperatura del núcleo del enfriador, el ventilador funciona continuamente, aun si el interruptor de encendido de la grúa se coloca en posición de apagado.

Servicio y mantenimiento del enfriador de aceite hidráulico

Es necesario mantener el enfriador de aceite hidráulico limpio para que el sistema de enfriamiento funcione de modo eficiente. Si se lava frecuentemente el núcleo del termointercambiador se eliminan las capas de aceite, tierra y otras acumulaciones de materiales en las aletas, las cuales reducen la eficiencia del enfriamiento.

La inspección y apriete frecuentes de las abrazaderas de conexión de mangueras eliminan la posibilidad de la falla de las conexiones debido a la contrapresión causada durante el arranque en frío.

Si el sistema de enfriamiento hidráulico no funciona de modo adecuado, la causa probable de ello es una reducción en el flujo de aire o de aceite a través del termointercambiador. Inspeccione el ventilador enfriador para comprobar su buen funcionamiento. Corrja todas las obstrucciones en el flujo del aire (enfriador demasiado cerca de otros componentes del camión, materias extrañas en las aletas del termointercambiador, etc.). Revise todas las líneas hidráulicas periódicamente en busca de obstrucciones, mangueras abolladas u otras restricciones del caudal.

Válvulas hidráulicas

Instrucción

Inspeccione la válvula de sentido en busca de daños visibles, agarrotamiento en los carretes y evidencia de fugas. Si se sospecha que hay fugas internas excesivas durante el funcionamiento con el carrete en su posición central, es posible que la zona entre el carrete y la cavidad de la sección móvil del cuerpo de la válvula se haya desgastado más allá de sus límites reparables. Si esta condición existe, el carrete y el cuerpo deberán reemplazarse como un conjunto.
Fugas en válvulas

Si el aceite hidráulico gotea, esto indica que existe algún tipo de fuga externa. Ponga la máquina fuera de servicio de inmediato para repararla. Algunas veces las fugas externas se desarrollan en los adaptadores y sellos. Los sellos de los carretes son susceptibles a ello, pues están sujetos a desgaste. Los sellos pueden dañarse como resultado de temperaturas excesivamente altas o por la acumulación de tierra o pintura en el carrete. Los sellos dañados deben sustituirse.

Si el funcionamiento de algún componente demuestra una reducción en su eficacia, esto puede deberse a que la válvula de control de dicho componente tiene fugas internas. Si la verificación preliminar demuestra que se está suministrando un volumen adecuado de aceite al banco de válvulas afectado, que las válvulas de alivio están debidamente ajustadas y que el componente no está averiado, revise la válvula en busca de piezas con acanaladuras o desgastadas. Las acanaladuras son señal de la contaminación (externa por polvo o interna por desperdicios de componentes deteriorados o aceite hidráulico oxidado). Los componentes acanalados o severamente desgastados deberán reemplazarse.

Las válvulas de retención de la válvula de control están diseñadas para permitir que el aceite hidráulico fluya en un sentido solamente. Si una partícula de tierra o de herrumbre ha llegado a la válvula de retención y se aloja entre la leva y el asiento, mantendrá abierta la válvula y permitirá que el aceite hidráulico fluya en sentido contrario. Limpie la válvula y verifique que el filtro del sistema hidráulico todavía esté en condiciones de funcionamiento.

Agarrotamiento de carretes

Algunas de las causas más comunes de la rigidez de movimiento de los carretes o del atascamiento de los carretes son el calentamiento excesivo del sistema, presión excesiva, aceite hidráulico contaminado o deteriorado y la deformación de montajes. Cuando la causa se debe a la quemadura, deterioro o contaminación del aceite hidráulico, enjuague el sistema y llénelo con aceite hidráulico limpio. Si las cavidades de los carretes están muy acanaladas o exco-
Palancas de control remoto hidráulicas
Las funciones de la grúa son controladas por palancas de control remoto hidráulicas (HRC) en el apoyabrazos del asiento del operador. Las palancas de control funcionan con presión piloto, que es generada por la válvula de control de sentido. La presión piloto se aplica a una tapa correspondiente en el conjunto de DCV. Cuando se aplica presión a la tapa, la presión piloto desplaza el carrete de la válvula en el sentido solicitado.

Colectores de estabilizadores
Las funciones de los estabilizadores son controladas por dos colectores ubicados en las cajas de estabilizadores delanteros y traseros. El colector delantero contiene la válvula de extensión/retracción, las válvulas de componentes de estabilizadores delanteros y la válvula de estabilizador delantero sencillo (SFO) opcional. El colector trasero contiene las válvulas de componentes de estabilizadores traseros. Las válvulas son accionadas por solenoides controlados por medio de interruptores ubicados en los paneles de control de estabilizadores que se encuentran en el costado de la plataforma. Hay una caja de control de estabilizadores portátil instalada en la cabina de la grúa.

Válvulas de retención
Las válvulas de retención accionadas por piloto ubicadas en el bloque de válvulas de cada cilindro actúan como válvulas de retención que impiden que el cilindro se desplome como resultado de la falla de una manguera. No intente retirar un bloque de válvulas a menos que el circuito esté completamente retraído.

No intente reparar ni ajustar la presión de la válvula. Si se sospecha una avería en una válvula de retención, sustitúyala por una válvula nueva.

Mecanismo de giro
La caja de engranajes de giro libre estándar está trabada en su lugar por medio de un freno de disco incorporado y aplicado por resorte. El interruptor del freno de giro está ubicado en el apoyabrazos izquierdo del asiento del operador y se usa para aplicar el freno de giro y estacionar la torreta en posición. Oprima el interruptor para activar el freno de giro e impedir que la torreta gire. Un diodo fotoemisor rojo se ilumina en la consola frontal de la cabina del operador cuando se aplica el interruptor de freno de giro.

La palanca de control de giro puede usarse para reducir la velocidad y detener el movimiento de giro moviendo la palanca de control en sentido opuesto al del giro. Por ejemplo, si la palanca se empuja hacia adelante para un giro en sentido horario, tire de la palanca hacia atrás para reducir la velocidad del giro y detenerlo.

Interruptor de alimentación de funciones de grúa
El interruptor de funciones de la grúa en la cabina activa una válvula de solenoide del colector piloto ubicado en la torreta para activar las palancas de control de la cabina de la grúa. El operador debe estar sentado en el asiento del operador con el apoyabrazos abajo para que el interruptor de alimentación de funciones de grúa esté activo.
BOMBA HIDRÁULICA

Descripción
La presión del sistema hidráulico es suministrada por una bomba hidráulica de émbolos axiales que se monta en la toma de fuerza (TDF) o chasis del camión.

Retiro
Si es necesario reemplazar la bomba hidráulica, también se deberá cambiar el aceite hidráulico para evitar la posibilidad de contaminación.

1. Vacíe el depósito hidráulico.
2. Marque y desconecte las líneas hidráulicas de la bomba hidráulica. Tape las líneas y tapone las lumbreras.
3. Saque los pernos de la escuadra de montaje trasera de la bomba.
4. Saque los pernos de la brida de montaje de la bomba y deslice la bomba para sacarla del acoplamiento impulsor de la TDF.

Instalación
1. Lubrique las estrías de la bomba y del acoplamiento del eje impulsor de la TDF con grasa espesa a base de lito.
2. Alinee las estrías del acoplamiento del eje impulsor de la TDF con el eje impulsor de la bomba y deslice el eje impulsor de la bomba hacia el acoplamiento.
3. Emperne la bomba (1, Figura 2-8) a la TDF con la brida de montaje de la bomba.
4. Emperne la escuadra de montaje trasera de la bomba a la escuadra de montaje del camión.
5. Vuelva a conectar las líneas hidráulicas según las marcó durante el retiro.
6. Vea “Arranque de la bomba” en la página 2-22 antes de arrancar el motor.

Arranque de la bomba
Si se retira la bomba hidráulica para mantenimiento o reemplazo, se debe realizar el siguiente procedimiento de arranque para evitar daños en la bomba hidráulica u otros componentes del sistema hidráulico.

1. Instale la bomba hidráulica en la TDF, siguiendo los procedimientos descritos en la sección de instalación. Vea Instalación, página 2-22.
2. Llene el depósito con aceite hidráulico.

PRECAUCIÓN
La válvula de corte de la línea de suministro deberá estar abierta para permitir que fluya aceite a la bomba y evitar que esta se dañe.

3. Abra la válvula de cierre de suministro de aceite hidráulico en la parte inferior del depósito hidráulico.
4. Vierta aceite hidráulico en la lumbrera de vaciado de la caja superior para llenar la caja de la bomba hidráulica con aceite hidráulico.
5. Llene la línea de suministro desde la bomba hasta el depósito con aceite hidráulico. Revise la línea en busca de adaptadores apretados correctamente y asegúrese de que esté libre de restricciones y fugas de aire.
6. Inspeccione la línea de vaciado de la caja en busca de fugas y restricciones.
7. Con el motor apagado, instale un acoplador de desconexión rápida para diagnóstico y revisión de presión (Parker PD240) con manómetro en la boquilla de prueba de la lumbrera del manómetro GP de la válvula de control de sentido (DCV) (vea la Figura 2-3).
8. Arranque el motor y hágalo funcionar a ralentí. Engrane la TDF mientras observa el manómetro. La presión del sistema hidráulico debe estar entre 51 y 55 bar (750 y 800 psi). Si la presión del sistema no sube, apague el motor y tome la acción correctiva del caso.
9. Si la presión del sistema está dentro de las especificaciones de arranque, haga funcionar el motor a ralentí de 2 a 3 minutos.
10. Haga funcionar el sistema bajo una carga liviana durante 5 a 10 minutos.
11. Revise/ajuste la presión de margen de la bomba; vea Ajuste de presión de margen de la bomba, página 2-23.
12. Revise/ajuste la presión máxima de la bomba; vea Ajuste de la presión máxima de la bomba, página 2-23.
13. Retire el manómetro. Revise el nivel de aceite hidráulico en el depósito y llene si es necesario.
Tabla 2-3. Ajustes de presión

<table>
<thead>
<tr>
<th>Presión de margen de la bomba</th>
<th>Presión máxima de la bomba</th>
<th>Presión de la válvula de alivio de detección de carga</th>
</tr>
</thead>
<tbody>
<tr>
<td>26 ± 4 bar (375 ± 50 psi)</td>
<td>345-0+4 bar (5000 -0+50 psi)</td>
<td>288 ± 7 bar (4175 ± 100 psi)</td>
</tr>
</tbody>
</table>

Ajuste de presión de margen de la bomba

1. Con el motor apagado, instale un acoplador de desconexión rápida para diagnóstico y revisión de presión (Parker PD240) con manómetro en la boquilla de prueba de la lumbrera del manómetro GP (2) de la válvula de control de sentido (DCV) (1). Vea Figura 2-9.

2. Arranque el motor y hágalo funcionar a ralentí. Engrane la toma de fuerza (TDF). No accione ninguna de las funciones.

3. Verifique que la presión de margen es de 26 ± 4 bar (375 ± 50 psi).

 Si la presión de margen no es correcta, ajuste el tornillo de ajuste de detección de carga (LS) (2, Figura 2-10) en la bomba. Gire el tornillo en el sentido de las agujas del reloj para aumentar el ajuste. Cada vuelta representa 19 bar (275 psi). Apriete la contratuerca a 16.2 Nm (12 lb pie) para asegurar el ajuste.

Preparación de la grúa

1. Arranque el motor y hágalo funcionar a ralentí. Engrane la toma de fuerza (TDF).

2. Lleve la pluma a su elevación máxima o tape las dos mangueras de la pluma. Accione la elevación de la pluma para aumentar la presión de la bomba hasta el ajuste máximo.

Ajuste de la presión máxima

1. Verifique que la presión máxima de la bomba esté en el ajuste correcto (vea la Tabla 2-3).

2. Si la presión máxima no es la correcta, ajuste el tornillo de ajuste de compensación de presión (PC).

3. Afoje la contratuerca y gire el tornillo de ajuste de PC (1, Figura 2-10) en el sentido de las agujas del reloj para aumentar el ajuste. Cada vuelta representa 100 bar (1450 psi). Apriete la contratuerca a 16.2 Nm (12 lb pie) para asegurar el ajuste.

4. Reposicione el ajuste de la LSRV (vea Ajuste de presión de la válvula de alivio de detección de carga).

Ajuste de presión de la válvula de alivio de detección de carga

NOTA: Realice este procedimiento después de ajustar la presión máxima de la bomba o de revisar el ajuste de la válvula de alivio de detección de carga (LSRV).

Método 1

Deje conectadas al motor las mangueras de elevación/bajada del malacate principal. Retire y tape la línea de freno del malacate principal en el bloque de bajada del malacate. Active la función de bajada del malacate para desarrollar presión.

Método 2

Desconecte y tape o tapone las mangueras para elevar y bajar el malacate principal. Active la función de elevación y bajada del malacate para desarrollar presión.

Ajuste de la presión de la LSRV

1. Arranque el motor y hágalo funcionar a ralentí. Engrane la TDF.

2. Utilice el método 1 o 2 y sujete la palanca de control. Verifique que la presión de la LSRV sea la correcta (consulte la Tabla 2-3).
3. Si la presión de LSRV no es correcta, gire el tornillo de ajuste de la LSRV. Afloje la contratuerca y ajuste el tornillo. Gire el tornillo de ajuste de PC (1, Figura 2-10) en el sentido de las agujas del reloj para aumentar el ajuste. Cada vuelta representa 59 bar (850 psi). Apriete la contratuerca a 5.4 Nm (4 lb pie) para asegurar el ajuste.

![Figura 2-10](image-url)

Tabla 2-4

<table>
<thead>
<tr>
<th>ANILLO “O” DE SUPERFICIE PLANA</th>
<th>TAMAÑO DE ADAPTADOR</th>
<th>REBORDE DE ANILLO “O”</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAMAÑO DE ROSCA</td>
<td>B pulg (mm)</td>
<td>A pulg (mm)</td>
</tr>
<tr>
<td>9/16-18</td>
<td>0.07 (1.78)</td>
<td>0.301 (7.64)</td>
</tr>
<tr>
<td>11/16-16</td>
<td>0.07 (1.78)</td>
<td>0.364 (9.24)</td>
</tr>
<tr>
<td>13/16-16</td>
<td>0.07 (1.78)</td>
<td>0.489 (12.42)</td>
</tr>
<tr>
<td>1-14</td>
<td>0.07 (1.78)</td>
<td>0.614 (15.60)</td>
</tr>
<tr>
<td>1 3/16-12</td>
<td>0.07 (1.78)</td>
<td>0.739 (18.77)</td>
</tr>
<tr>
<td>1 7/16-12</td>
<td>0.07 (1.78)</td>
<td>0.926 (23.52)</td>
</tr>
<tr>
<td>1 11/16-12</td>
<td>0.07 (1.78)</td>
<td>1.176 (29.87)</td>
</tr>
<tr>
<td>2-12</td>
<td>0.07 (1.78)</td>
<td>1.489 (37.82)</td>
</tr>
</tbody>
</table>

NOTA: Comuníquese con su distribuidor de National Crane o con Manitowoc Crane Care para los juegos de sellos de anillo “O” con reborde.
LOCALIZACIÓN DE AVERÍAS

La tabla siguiente indica averías que pueden suceder durante el uso del equipo, las causas y soluciones posibles.

Esta no es una lista exhaustiva; está diseñada para ayudar a identificar la avería y debe revisarse antes de llamar a Manitowoc Crane Care.

<table>
<thead>
<tr>
<th>CONDICIÓN</th>
<th>CAUSA POSIBLE</th>
<th>SOLUCIÓN POSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>No hay flujo de aceite hidráulico en ningún sistema.</td>
<td>Nivel de aceite hidráulico bajo</td>
<td>Llene el depósito.</td>
</tr>
<tr>
<td>Las líneas de aspiración entre el depósito y la bomba están rotas o restringidas. Entrada de aire en las líneas de aspiración. La bomba no se puede cebar.</td>
<td>Si el eje impulsor está dañado o roto, retirelo y repárelo o reemplácelo según sea necesario.</td>
<td></td>
</tr>
<tr>
<td>Eje de la bomba roto o desconectado</td>
<td>Revise que todas las conexiones estén apretadas y que no existan roturas. Limpie, apriete, repare o reemplace las piezas según sea necesario.</td>
<td></td>
</tr>
<tr>
<td>Contaminación interna</td>
<td>Vacíe, enjuague con la mezcla de aceite recomendada, vuelva a vaciar y llene de nuevo el sistema con el aceite hidráulico recomendado.</td>
<td></td>
</tr>
<tr>
<td>El sistema responde lento.</td>
<td>Nivel de aceite hidráulico bajo.</td>
<td>Llene el depósito.</td>
</tr>
<tr>
<td>Temperatura de aceite hidráulico muy alta (aceite ralo) o muy baja (aceite espeso).</td>
<td>Si la temperatura es excesivamente alta, revise el circuito del enfriador. Si la temperatura es muy baja, caliente el sistema.</td>
<td></td>
</tr>
<tr>
<td>Bomba averiada.</td>
<td>Repare o reemplace la bomba.</td>
<td></td>
</tr>
<tr>
<td>Ruido en la bomba acompañado de formación de espuma de aceite hidráulico en el depósito.</td>
<td>Nivel de aceite hidráulico bajo.</td>
<td>Llene el depósito.</td>
</tr>
<tr>
<td>Velocidad excesiva del motor.</td>
<td>Regule la velocidad del motor.</td>
<td></td>
</tr>
<tr>
<td>Entrada de aire en la línea de aspiración.</td>
<td>Revise que todas las conexiones de líneas estén apretadas. Apriete, repare o reemplace según sea necesario.</td>
<td></td>
</tr>
<tr>
<td>Acumulación excesiva de presión.</td>
<td>Avería de la válvula de alivio del circuito, o presión de alivio ajustada a nivel excesivo.</td>
<td>Revise la presión de la válvula de alivio del circuito y ajuste o reemplace la válvula.</td>
</tr>
<tr>
<td>Línea de suministro restringida entre la bomba y la válvula de control.</td>
<td>Limpie, repare o reemplace la línea según sea necesario.</td>
<td></td>
</tr>
<tr>
<td>Un sistema hidráulico específico (elevación, malacate, giro) no funciona.</td>
<td>Fugas en el sistema.</td>
<td>Repare las fugas.</td>
</tr>
<tr>
<td>Avería de válvula de control de sentido (DCV).</td>
<td>Avería de válvula de control de sentido (DCV).</td>
<td>Reemplace la válvula.</td>
</tr>
<tr>
<td>Localice las averías en el circuito usando el diagrama esquemático.</td>
<td>Control mal ajustado en el circuito. Ajuste el componente hidráulico.</td>
<td></td>
</tr>
<tr>
<td>Avería en cilindro hidráulico, motor o válvula.</td>
<td>Repare las fugas.</td>
<td></td>
</tr>
<tr>
<td>CONDICIÓN</td>
<td>CAUSA POSIBLE</td>
<td>SOLUCIÓN POSIBLE</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>No hay respuesta al control.</td>
<td>Interruptor de alimentación de funciones de la grúa desconectado.</td>
<td>Conecte el interruptor de alimentación de funciones de la grúa.</td>
</tr>
<tr>
<td></td>
<td>Carga excesivamente pesada.</td>
<td>Revise la tabla de capacidades.</td>
</tr>
<tr>
<td></td>
<td>El RCL es inoperante.</td>
<td>Compruebe que el RCL esté debidamente programado y que los solenoides de prevención del contacto entre bloques/sobrecargas reciban alimentación.</td>
</tr>
<tr>
<td></td>
<td>Toma de fuerza (TDF) no engranada.</td>
<td>Engrane la TDF.</td>
</tr>
<tr>
<td></td>
<td>Nivel bajo de suministro de fluido hidráulico.</td>
<td>Revise y llene según se requiera.</td>
</tr>
<tr>
<td></td>
<td>Línea de aspiración obstruida.</td>
<td>Vacie el depósito y la manguera y quite la obstrucción.</td>
</tr>
<tr>
<td></td>
<td>Rotura en línea de presión hidráulica.</td>
<td>Reemplace según se requiera.</td>
</tr>
<tr>
<td></td>
<td>Avería de la bomba hidráulica.</td>
<td>Vea el manual de servicio de la bomba.</td>
</tr>
<tr>
<td></td>
<td>Ajuste incorrecto de la válvula de alivio.</td>
<td>Ajuste la válvula de alivio.</td>
</tr>
<tr>
<td></td>
<td>Pegadura de la válvula de alivio.</td>
<td>Limpie o reemplace la válvula de alivio.</td>
</tr>
<tr>
<td></td>
<td>Palancas de control hidráulico inoperantes.</td>
<td>Revise que se reciba presión piloto en los vástagos de la válvula principal.</td>
</tr>
<tr>
<td></td>
<td>Obstrucción en malla de filtro del colector de la grúa (circuito piloto).</td>
<td>Retire la malla y limpiela o reemplácela.</td>
</tr>
<tr>
<td>Rendimiento deficiente del sistema hidráulico.</td>
<td>La bomba no funciona a los niveles adecuados de velocidad o de caudal.</td>
<td>Revise la relación de la TDF, el tamaño de la bomba y la velocidad del motor para verificar que el caudal de aceite sea el correcto.</td>
</tr>
<tr>
<td></td>
<td>Nivel bajo de suministro de fluido hidráulico.</td>
<td>Revise y llene según se requiera.</td>
</tr>
<tr>
<td></td>
<td>Pegadura de la válvula de alivio.</td>
<td>Retire y limpie.</td>
</tr>
<tr>
<td></td>
<td>válvula de alivio ajustada a un valor muy bajo.</td>
<td>Ajuste al valor adecuado.</td>
</tr>
<tr>
<td></td>
<td>Bomba, motor o cilindro desgastado.</td>
<td>Reemplace los componentes desgastados.</td>
</tr>
<tr>
<td></td>
<td>Filtro obstruido.</td>
<td>Cambie el filtro.</td>
</tr>
<tr>
<td>Rendimiento deficiente del sistema hidráulico (continuación).</td>
<td>Los carretes de la válvula no se abren completamente.</td>
<td>La presión piloto en las tapas de válvula deberá medir de 7 a 24 bar (100 a 350 psi) para que la válvula tenga su carrera plena.</td>
</tr>
<tr>
<td></td>
<td>Difusor obturado.</td>
<td>Retirelo del depósito y limpielo.</td>
</tr>
<tr>
<td></td>
<td>Válvulas de retención de la pluma desajustadas o sucias.</td>
<td>Ajuste o limpie según sea necesario.</td>
</tr>
<tr>
<td></td>
<td>El aceite hidráulico está muy frío.</td>
<td>Caliente el aceite o utilice aceite menos viscoso.</td>
</tr>
<tr>
<td></td>
<td>Línea restringida.</td>
<td>Revise las líneas; limpielas y repárelas según sea necesario.</td>
</tr>
<tr>
<td></td>
<td>Obstrucción en coladores de aspiración.</td>
<td>Retire los coladores del depósito y limpielos.</td>
</tr>
<tr>
<td></td>
<td>Rotura interna en válvula.</td>
<td>Reemplace la válvula.</td>
</tr>
<tr>
<td></td>
<td>Carga excesivamente pesada.</td>
<td>Revise la tabla de capacidades y reduzca la carga.</td>
</tr>
<tr>
<td></td>
<td>Temperatura excesivamente alta del aceite.</td>
<td>Reduzca la aceleración del motor o prolongue el tiempo de ciclo para que el aceite se enfríe. Instale el enfriador de aceite opcional, si no lo tiene.</td>
</tr>
</tbody>
</table>
CONDICIÓN

<table>
<thead>
<tr>
<th>CAUSA POSIBLE</th>
<th>SOLUCIÓN POSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soltura en cojinete de giro.</td>
<td>Apriete los pernos de montaje de cojinete.</td>
</tr>
<tr>
<td>Pernos de montaje sueltos en mecanismo de giro.</td>
<td>Apriete los pernos.</td>
</tr>
<tr>
<td>Engranajes o cojinete desgastados.</td>
<td>Reemplace las piezas averiadas o ajuste el espacio del mecanismo.</td>
</tr>
<tr>
<td>El operador acciona la palanca de control de modo errático.</td>
<td>Accione los controles con suavidad.</td>
</tr>
<tr>
<td>El freno de estacionamiento no se suelta.</td>
<td>Revise la presión de la línea de liberación del freno. Debe ser de 21 a 34 bar (300 a 500 psi).</td>
</tr>
<tr>
<td>El freno dinámico no se aplica correctamente.</td>
<td>Revise la presión del freno dinámico. Debe modular entre 0 y 34 bar (0 y 500 psi).</td>
</tr>
<tr>
<td>Se intenta girar hacia arriba sobre una pendiente excesivamente empinada.</td>
<td>Nivele la máquina.</td>
</tr>
<tr>
<td>Pegadura de las válvulas de alivio del circuito de giro.</td>
<td>Limpie y revise la presión del circuito.</td>
</tr>
<tr>
<td>Resistencia a la rodadura en cojinete de giro.</td>
<td>Lubrique completamente mientras se gira la superestructura.</td>
</tr>
<tr>
<td>Freno de giro aplicado.</td>
<td>Seleccione el interruptor de control del freno de giro y compruebe que la presión de liberación del freno de giro mida de 20 a 34 bar (300 a 500 psi).</td>
</tr>
<tr>
<td>Ajuste demasiado bajo de la velocidad de giro.</td>
<td>Ajuste la válvula en el motor de giro.</td>
</tr>
<tr>
<td>El freno no retiene correctamente.</td>
<td>Verifique que la presión sea nula en la línea piloto de frenos cuando el sistema de giro está en punto muerto.</td>
</tr>
<tr>
<td>El freno no se libera correctamente.</td>
<td>Reemplace las piezas desgastadas del sistema de frenos o coloque suplementos en el freno para obtener el par de apriete correcto.</td>
</tr>
<tr>
<td>El freno se libera en el momento incorrecto o de modo errático.</td>
<td>Purgue el aire de los frenos usando el tornillo de purga ubicado en el costado del freno.</td>
</tr>
</tbody>
</table>

CONDICIÓN (sistema de giro libre)

<table>
<thead>
<tr>
<th>CAUSA POSIBLE</th>
<th>SOLUCIÓN POSIBLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engranajes o cojinete desgastados.</td>
<td>Reemplace las piezas averiadas o ajuste el espacio del mecanismo.</td>
</tr>
<tr>
<td>El operador acciona la palanca de control de modo errático.</td>
<td>Accione los controles con suavidad.</td>
</tr>
<tr>
<td>El freno de estacionamiento no se suelta.</td>
<td>Revise la presión de la línea de liberación del freno. Debe ser de 21 a 34 bar (300 a 500 psi).</td>
</tr>
<tr>
<td>El freno dinámico no se aplica correctamente.</td>
<td>Revise la presión del freno dinámico. Debe modular entre 0 y 34 bar (0 y 500 psi).</td>
</tr>
<tr>
<td>Se intenta girar hacia arriba sobre una pendiente excesivamente empinada.</td>
<td>Nivele la máquina.</td>
</tr>
<tr>
<td>Pegadura de las válvulas de alivio del circuito de giro.</td>
<td>Limpie y revise la presión del circuito.</td>
</tr>
<tr>
<td>Resistencia a la rodadura en cojinete de giro.</td>
<td>Lubrique completamente mientras se gira la superestructura.</td>
</tr>
<tr>
<td>Freno de giro aplicado.</td>
<td>Seleccione el interruptor de control del freno de giro y compruebe que la presión de liberación del freno de giro mida de 20 a 34 bar (300 a 500 psi).</td>
</tr>
<tr>
<td>Ajuste demasiado bajo de la velocidad de giro.</td>
<td>Ajuste la válvula en el motor de giro.</td>
</tr>
<tr>
<td>CONDICIÓN</td>
<td>CAUSA POSIBLE</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Ruido excesivo durante el funcionamiento.</td>
<td>Temperatura baja del aceite hidráulico.</td>
</tr>
<tr>
<td></td>
<td>Bajo suministro de aceite hidráulico.</td>
</tr>
<tr>
<td></td>
<td>Línea de aspiración torcida, abollada u obstruida.</td>
</tr>
<tr>
<td></td>
<td>Aceite hidráulico demasiado viscoso.</td>
</tr>
<tr>
<td></td>
<td>Obstrucción en coladores de aspiración.</td>
</tr>
<tr>
<td></td>
<td>Castañoeteo de la válvula de alivio.</td>
</tr>
<tr>
<td></td>
<td>Resistencia en freno de giro.</td>
</tr>
<tr>
<td></td>
<td>Vibración de la tubería hidráulica.</td>
</tr>
<tr>
<td></td>
<td>Obstrucción en respirador del depósito.</td>
</tr>
<tr>
<td>Caída de cilindros.</td>
<td>Sellos de émbolos desgastados o dañados.</td>
</tr>
<tr>
<td></td>
<td>Aire en el aceite hidráulico.</td>
</tr>
<tr>
<td></td>
<td>Válvula de retención suelta.</td>
</tr>
<tr>
<td></td>
<td>Tierra en válvula de retención.</td>
</tr>
<tr>
<td>El malacate no eleva ni retiene la carga.</td>
<td>Carga excesivamente pesada.</td>
</tr>
<tr>
<td></td>
<td>Sobrecarga del malacate o pluma que causa la parada del RCL.</td>
</tr>
<tr>
<td></td>
<td>Válvula de alivio ajustada a un valor muy bajo.</td>
</tr>
<tr>
<td></td>
<td>Motor averiado.</td>
</tr>
<tr>
<td></td>
<td>Embrague de uñas averiado.</td>
</tr>
<tr>
<td></td>
<td>El bloque de carga está demasiado próximo a la punta de la pluma, parada generada por el sistema de prevención del contacto entre bloques</td>
</tr>
<tr>
<td></td>
<td>Freno desgastado.</td>
</tr>
<tr>
<td></td>
<td>Avería en el sistema de prevención del contacto entre bloques</td>
</tr>
<tr>
<td>El mecanismo del malacate se sobrecalienta.</td>
<td>Nivel bajo de grasa en mecanismo.</td>
</tr>
<tr>
<td></td>
<td>Ciclo de trabajo muy alto.</td>
</tr>
<tr>
<td>No es posible arrancar el motor diésel del camión desde la cabina de la grúa.</td>
<td>Interruptor de encendido del camión conectado.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CONDICIÓN</td>
<td>CAUSA POSIBLE</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>La pluma castañetea durante la extensión/ retracción o no funciona de modo proporcional.</td>
<td>Las secciones de la pluma requieren lubricación.</td>
</tr>
<tr>
<td></td>
<td>Cantidad incorrecta de suplementos en almohadillas de desgaste.</td>
</tr>
<tr>
<td></td>
<td>La pluma está caliente debido a ciclos de trabajo de extensión severos.</td>
</tr>
<tr>
<td></td>
<td>Almohadillas de desgaste desgastadas.</td>
</tr>
<tr>
<td></td>
<td>El cilindro se ha destrabado.</td>
</tr>
<tr>
<td></td>
<td>Cables de extensión desajustados.</td>
</tr>
<tr>
<td></td>
<td>Cables de extensión o retracción rotos.</td>
</tr>
<tr>
<td>La pluma no se extiende.</td>
<td>Los cables no están debidamente conectados.</td>
</tr>
<tr>
<td></td>
<td>Apagado por sistema de prevención del contacto entre bloques.</td>
</tr>
<tr>
<td></td>
<td>Avería en el sistema de prevención del contacto entre bloques.</td>
</tr>
<tr>
<td></td>
<td>Hay una sobrecarga que causa que el RCL pare la máquina.</td>
</tr>
<tr>
<td></td>
<td>El caudal o presión de aceite es insuficiente para extender el cilindro.</td>
</tr>
<tr>
<td>El giro responde con pulsaciones por unos cuantos segundos.</td>
<td>Se acelera el giro demasiado rápidamente.</td>
</tr>
<tr>
<td>El giro responde con pulsaciones continuas y se mueve lentamente.</td>
<td>Presión baja en circuito piloto.</td>
</tr>
<tr>
<td>El giro no arranca de modo uniforme o aumenta/ reduce su velocidad significativamente cuando la palanca de control se aproxima al final de su carrera.</td>
<td>Resortes de tipo incorrecto o averiados en carrete de válvula o existen rebabas en el carrete de válvula.</td>
</tr>
<tr>
<td>El giro se mueve erráticamente en un cuadrante.</td>
<td>La máquina está desnivelada o hay condiciones de mucho viento.</td>
</tr>
</tbody>
</table>
ESTA PÁGINA HA SIDO DEJADA EN BLANCO INTENCIONALMENTE
SECCIÓN 3
SISTEMA ELÉCTRICO

CONTENIDO DE LA SECCIÓN

Descripción .. 3-1
Arranque de la grúa con batería de refuerzo 3-1
Carga ... 3-1
Mantenimiento ... 3-1
 Generalidades ... 3-1
 Localización de averías generales 3-2
 Localización de averías de conectores 3-2
 Herramientas para localización de averías 3-2
 Localización de averías del adaptador 3-2
 Interruptor de encendido 3-2
Descripción del sistema del RCL 3-2
 Descripción del sistema RCL y de prevención del contacto entre bloques 3-3
Tablero de fusibles y relés 3-4
 Caja de micro relés/fusibles 1 3-6
 Caja de micro relés/fusibles 2 3-6
 Caja de micro relés/fusibles 3 3-7
 Caja de micro relés/fusibles 4 3-8
Módulo del VEC ... 3-9
Solenoides de colector de grúa 3-10
Colectores de estabilizadores 3-13
 Colector de estabilizadores delanteros 3-13
 Colector de estabilizadores traseros 3-14
Enfriador de aceite hidráulico 3-15
Luz de advertencia del sensor de temperatura del aceite hidráulico 3-15
Sistema de monitoreo de estabilizadores (OMS) 3-15
Sistema de monitoreo de gatos de estabilizadores (opcional) 3-15

DESCRIPCIÓN

El sistema eléctrico del camión es un sistema estándar de 12 VCC tipo automovilístico que suministra alimentación a todas las funciones de la grúa. El arnés de alambrado se coloca a través del chasis del camión y contiene los alambres de conexión entre el camión y la grúa, incluyendo los controles eléctricos de estabilizadores.

ARRANQUE DE LA GRÚA CON BATERÍA DE REFUERZO

No intente arrancar la grúa haciendo puente.

PRECAUCIÓN

Se recomienda encarecidamente no “puentar” las baterías con otro vehículo, una fuente de alimentación portátil, etc. La sobrecarga de energía de estas fuentes puede dañar irreparablemente los diversos controles electrónicos y sistemas informáticos. Puentear las baterías de la grúa con otro vehículo mientras el motor está en marcha también puede dañar los componentes electrónicos del vehículo donante si se hace de manera inadecuada.

Todos los modelos de grúa, especialmente los fabricados desde el año 2000, disponen de múltiples sistemas informáticos (control de grúa, RCL, control de motor y transmisión) que son altamente susceptibles a sobretensiones en el sistema eléctrico.

Las baterías deben estar completamente desconectadas del sistema eléctrico de la grúa y cargadas usando un cargador de baterías con el nivel de voltaje apropiado o reemplazar las baterías con baterías completamente cargadas.

Carga

Al cargar las baterías, no encienda el cargador de baterías hasta que los cables de carga se hayan conectado a la(s) batería(s). Además, si se descubre que la(s) batería(s) está(n) congelada(s), no intente cargarla(s). Retire la(s) batería(s) de la grúa, permita que se descongelen y luego cargue la(s) batería(s) a plena capacidad.

Se prefiere la “carga lenta” a la “carga rápida”. La carga rápida ahorra tiempo pero corre el riesgo de sobrecalentar la(s) batería(s). La carga lenta a seis (6) amperios o menos desarrolla menos calor dentro de la batería y rompe el sulfato en las placas de la batería más eficientemente para cargar la batería hasta el nivel de carga total. Debe utilizarse un “cargador inteligente” que ajuste automáticamente el amperaje de carga.

MANTENIMIENTO

Generalidades

El mantenimiento del sistema eléctrico incluye la localización de averías y la sustitución de componentes dañados. Observe las prácticas normales de alambrado cuando sustituya componentes.
Cuando artículos metálicos de joyería, anillos o relojes de pulsera entran en contacto con circuitos con corriente, se pueden producir quemaduras graves. Quite todos los artículos metálicos de joyería, anillos y relojes de pulsera antes de intervenir en circuitos con corriente.

Localización de averías generales
Efectúe las revisiones de voltaje en los bornes cuando los componentes estén instalados y en funcionamiento. Efectúe las revisiones de continuidad cuando se hayan aislado o retirado los componentes. Localice las averías según las siguientes pautas:

1. Utilice los síntomas notificados para identificar un problema o un componente sospechoso.
2. Utilice un multímetro para medir la continuidad si existe la posibilidad de un circuito abierto o para medir el voltaje si existe la posibilidad de un problema de alimentación. Revise el diagrama eléctrico esquemático para información más precisa acerca del alambrado.
3. Sustituya los componentes y alambres averiados.
4. Pruebe el circuito reparado y verifique que el mismo funcione correctamente.

Localización de averías de conectores
La causa de un problema eléctrico puede ser una conexión floja o corroída en un conector. Revise los conectores para cerciorarse que las clavijas y los receptáculos estén apropiadamente asentados y enganchados. Si las clavijas y los receptáculos muestran cualquier signo de corrosión, utilice un limpiador de contactos eléctricos de buena calidad o papel de lija fino para limpiarlos. Cuando las clavijas o los receptáculos muestran señales de arqueo o quemadura, puede ser necesario cambiarlos.

Es necesario cortar los conectores dañados para quitarlos y esto puede dejar al alambre demasiado corto para que el conector nuevo haga el contacto debido. El alambre deberá tener algo de holgura luego de haber armado el conector. Empalme un alambre del mismo calibre que el alambre que se cortó. Utilice soldadura para crear una buena conexión y un tubo aislante termoencogible para aislar el empalme. Engarce el conector nuevo haciendo el contacto debido. El alambre deberá tener algo de holgura luego de haber armado el conector. Empalme un alambre del mismo calibre que el alambre que se cortó. Utilice soldadura para crear una buena conexión y un tubo aislante termoencogible para aislar el empalme. Engarce el conector nuevo en el alambre empalmado.

Herramientas para localización de averías
Para localizar averías eficazmente en el Sistema de monitoreo de estabilizadores (OMS) y la opción A92.2 (si la tiene), necesita una computadora con sistema operativo Windows, el software de servicio HED, el software de servicio CAN-Link y el cable diagnóstico. Para obtener más información, comuníquese con Manitowoc Crane Care.

Manitowoc Crane Care recomienda que tenga como parte de su inventario, el juego de herramienta de servicio Orchestra (CAN-Link) para la NBT40-1. Este software le permitirá observar en tiempo real el estado de todas las señales de entrada y salida del sistema y detectar cualquier error de entrada o salida. El software y el hardware de servicio Orchestra (CAN-Link) están disponibles a través de Manitowoc Crane Care para aquellos técnicos que hayan completado exitosamente el curso de capacitación de Orchestra.

Localización de averías del adaptador giratorio eléctrico
Muchos problemas eléctricos de los componentes de la grúa pueden localizarse en el adaptador eléctrico giratorio. Los problemas comunes del adaptador giratorio son montaje incorrecto, materia extraña entre las escobillas y los anillos colectores, escobillas desgastadas, tensión incorrecta de los resortes en el conjunto de escobillas, así como tornillos de fijación flojos en el conjunto del anillo colector. Consulte el diagrama esquemático eléctrico esquemático y el diagrama de alambrado para obtener información acerca de las conexiones y amperajes de los anillos colectores.

Interruptor de encendido
Hay dos interruptores de encendido en la grúa. Uno se encuentra en la cabina del camión y el otro en la consola de la cabina de la grúa. Se puede energizar solamente un interruptor de encendido a la vez.

NOTA: Si un interruptor de encendido no acciona el arrancador del camión, verifique que el otro interruptor de encendido esté en posición de OFF (APAGADO).

Cuando se coloca el interruptor de encendido de la grúa del puesto del operador en la posición de MARCHA y la TDF está engranada, el pedal del acelerador del puesto del operador anula el acelerador de la cabina del camión, el sistema RCL recibe alimentación y las funciones de la grúa pueden activarse. Los controles inferiores de estabilizadores quedan inhabilitados cuando el interruptor de alimentación de funciones de grúa está en ON (ENCENDIDO).

DESCRIPCIÓN DEL SISTEMA DEL RCL
El limitador de capacidad nominal (RCL) monitorea el funcionamiento de la grúa y alerta al operador sobre los límites de estabilidad o estructurales basados en la tabla de carga. Las funciones de la grúa que pueden empernar la condición (elección del malacate, bajada de la pluma, extensión del cilindro telescópico) están inhabilitadas.

Hay una llave de anulación del sistema RCL detrás del asiento del operador (vea la Figura 3-2). Gire el interruptor
con llave a la posición de conectado para anular el RCL. El RCL tiene alimentación no conmutada suministrada por la batería del camión para permitir que el RCL guarde la configuración del sistema y del usuario.

NOTA: Consulte el manual del RCL en caso de que este sistema sufra alguna avería.

Descripción del sistema RCL y de prevención del contacto entre bloques

El sistema de prevención del contacto entre bloques (A2B) es la parte del sistema RCL que ayuda a evitar daño al cable del malacate al detectar cuando el estribo de suspensión de la bola, del aparejo de gancho o del cable se encuentra cerca de la punta de la pluma e inhabilita las funciones que causan contacto entre bloques.

El funcionamiento normal se restaura al bajar la carga con el malacate (o retraer la pluma) hasta que el peso del dispositivo de prevención de contacto entre bloques quede nuevamente suspendido libremente.

ADVERTENCIA

Bajo ninguna circunstancia se deberá permitir que personas trabajen a alturas elevadas sin utilizar medios de protección contra caídas, según lo exijan los reglamentos locales, estatales o federales.

El cable de dispositivo de prevención de contacto entre bloques/RCL de la pluma (1, Figura 3-1) se extiende del carrete de prevención de contacto entre bloques (2) por la pluma y hasta el conjunto de interruptor de prevención de contacto entre bloques (4). El cable de conjunto de interruptor de dispositivo de prevención de contacto entre bloques se conecta al peso de prevención del contacto entre bloques (5).

El cable de RCL (3, Figura 3-1) se proyecta de la parte inferior del carrete (2) hasta el extremo de la pluma, luego se divide, con un cable (cable de CAN) hacia el bloque de empalmes de CAN. Un segundo cable se proyecta del carrete de RCL hasta el arnés de alambrado de la superestructura y transmite las señales del interruptor de pie de elevación aérea (si lo tiene).

NOTA: El codificador de giro está en el cable CAN y de forma interna en el anillo colector eléctrico.

Los dos transductores de presión del cilindro de elevación están integrados al cilindro de elevación y los cables CAN se proyectan desde cada sensor al bloque de empalmes de CAN (6) ubicado dentro de la torreta.

Para reemplazar el cable de dispositivo de prevención de contacto entre bloques/RCL (1) o el carrete completo (2), desconecte el cable en el interruptor de prevención de contacto entre bloques (4) y las conexiones del cable eléctrico en el carrete. Luego, retire el cable de largo o el carrete para darle servicio.
TABLERO DE FUSIBLES Y RELÉS

El tablero de fusibles y relés de la cabina y la superestructura (1, Figura 3-2) se encuentra detrás del asiento del operador. Retire los dos tornillos que aseguran el panel de acceso para obtener acceso a la parte trasera de los bloques de fusibles, relés y conectores de interfaz.
FIGURA 3-2

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Componente</th>
<th>Artículo</th>
<th>Componente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tablero de fusibles y relés</td>
<td>6</td>
<td>Caja de fusibles N.° 1</td>
</tr>
<tr>
<td>2</td>
<td>Zumbador, MWI</td>
<td>7</td>
<td>Relé de accesorios</td>
</tr>
<tr>
<td>3</td>
<td>Interruptor con llave de anulación de RCL</td>
<td>8</td>
<td>Relé de grúa</td>
</tr>
<tr>
<td>4</td>
<td>Caja de fusibles N.° 3</td>
<td>9</td>
<td>Relé de controles remotos</td>
</tr>
<tr>
<td>5</td>
<td>Caja de fusibles N.° 2</td>
<td>10</td>
<td>Relé de HVAC</td>
</tr>
</tbody>
</table>
Caja de micro relés/fusibles 1
El bloque 1 micro relés/fusibles (6, Figura 3-2) se encuentra en el lado izquierdo del panel de fusibles de relés y contiene los componentes siguientes: Vea Figura 3-3.

- R1 - Circuito de indicador de vueltas mínimas (MWI) del malacate auxiliar (opcional)
- R2 - Circuito de indicador de vueltas mínimas (MWI) del malacate principal (opcional)
- R3 - Relé de alimentación del aire acondicionado
- R4 - Relé de estacionamiento de limpiaparabrisas
- R5 - Relé de estacionamiento de limpiacristal de techo
- F1 - Reserva - Relé de alimentación de grúa/unidad remota - 10 A
- F2 - Circuito de calefactor diésel -15 A
- F3 - Reserva - 5 A
- F4 - Reserva - 7.5 A
- F5 - Relé de alimentación de aire acondicionado - 15 A
- F6 - Reserva - 15 A
- F7 - Reserva - 10 A
- F8 - Reserva - 10 A
- F9 - Reserva - 30 A
- F10 - Alimentación de HVAC - 30 A

Caja de micro relés/fusibles 2
El bloque de micro relés/fusibles 2 (5, Figura 3-2) se encuentra en el medio del panel de fusibles de relés y contiene los componentes siguientes: Vea Figura 3-4.

- R1 - Relé de lavaparabrisas
- R2 - Relé de encendido
- R3 - Relé de controlador OIR
- R4 - Relé de bomba auxiliar
- R5 - Relé de la bocina
- F1 - Relé de lavaparabrisas - 3 A
- F2 - Tablero de alimentación superior - 15 A
- F3 - Reserva - 5 A
- F4 - Limpiaparabrisas - 10 A
- F5 - Alimentación del LMI - 10 A
- F6 - Limpiacristal del techo - 10 A
- F7 - Bomba auxiliar - 15 A
- F8 - Salida de accesorio - 10 A
- F9 - Bocina - 7.5 A
- F10 - Alimentación de interruptor del asiento - 5 A
Caja de micro relés/fusibles 3

El bloque de micro relés/fusibles 3 (4, Figura 3-2) se encuentra en el lado derecho del panel de fusibles de relés y contiene los componentes siguientes: Vea Figura 3-5.

- R1 - Relé de interbloqueo del control inferior
- R2 - Relé de interbloqueo A92.2
- R3 - Relé de interbloqueo de funciones de grúa
- R4 - Relé de bloqueo del LMI
- R5 - Relé de alimentación de la grúa y la unidad remota
- F1 - Reserva - 7.5 A
- F2 - Alimentación velocidad del malacate - 7.5 A
- F3 - Reserva - 5 A
- F4 - Reserva - 10 A
- F5 - Solenoides de bloqueo del MWI - 10 A
- F6 - Interruptor de freno de giro, vibrador del malacate - 5 A
- F7 - Bloqueo del LMI - 10 A
- F8 - Sensor de WDR/MWI - 3 A
- F9 - Reserva - 15 A
- F10 - Alimentación del controlador de OIR - 3 A
Caja de micro relés/fusibles 4

El bloque de micro relés/fusibles 4 (1, Figura 3-6) se ubica en la parte trasera de la grúa debajo del contrapeso y del depósito de lavaparabrisas (2) y está instalado con la opción de control remoto por radio.

La caja de micro relés/fusibles 4 contiene los siguientes componentes. Vea Figura 3-7.

- R1 - Relé de alimentación de control remoto
- R2 - Relé de alimentación de la grúa
- R3 - Relé de arranque remoto
- R4 - Relé de alimentación del receptor
- R5 - Relé de acelerador remoto
- F1 - No se usa
- F2 - Reserva - 25 A
- F3 - Alimentación de la grúa - 25 A
- F4 - Reserva - 10 A
- F5 - Reserva - 3 A
- F6 - Reserva - 3 A
- F7 - Reserva - 10 A
- F8 - Colector de giro de modo doble - 3 A
- F9 - Acelerador remoto
- F10 - No se usa
MÓDULO DEL VEC

El módulo del centro eléctrico del vehículo (VEC) (8, Figura 3-8) se encuentra en una envuelta en el apoyo de la pluma encima del colector de estabilizadores delanteros. El módulo del VEC contiene los relés y disyuntores siguientes:

- El relé de encendido del camión (1) inhabilita el encendido del camión cuando no hay una señal de encendido de la grúa o cuando uno de los interruptores de parada de emergencia inferiores está presionado. El circuito de encendido del camión está protegido contra sobrecargas por el disyuntor 1 (10).
- El relé del enfriador de aceite (2) envía alimentación al ventilador del enfriador cuando se cierra el interruptor de temperatura del aceite. El circuito del enfriador de aceite está protegido contra sobrecargas por el disyuntor 2 (11).
- El relé de arranque del motor diésel (4) activa el circuito del arrancador del motor desde el interruptor de encendido de la cabina de la grúa o desde el control remoto por radio. El circuito de arranque del motor está protegido contra sobrecargas por el disyuntor 1 (10).
- El relé de encendido de la grúa (6) inhabilita el interruptor de encendido de la grúa cuando el camión está en marcha. El circuito de encendido de la grúa está protegido contra sobrecargas por el disyuntor 1 (10).
- El relé de control de estabilizadores (7) suministra alimentación para el control de estabilizadores a nivel del suelo. Cuando el interruptor de alimentación de funciones de la grúa se activa, el control de estabilizadores a nivel del suelo queda inhabilitado. El circuito de control de estabilizadores está protegido contra sobrecargas por el disyuntor 2 (11).
- Dos relés (3 y 5) no se utilizan.

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Componente</th>
<th>Artículo</th>
<th>Componente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Relé de encendido del camión</td>
<td>8</td>
<td>Centro eléctrico del vehículo (VEC)</td>
</tr>
<tr>
<td>2</td>
<td>Relé del enfriador de aceite</td>
<td>9</td>
<td>Diodo (se usan 2)</td>
</tr>
<tr>
<td>3</td>
<td>No se usa</td>
<td>10</td>
<td>Disyuntor 1 (CB1) - 20 A</td>
</tr>
<tr>
<td>4</td>
<td>Relé de arranque del motor diésel</td>
<td>11</td>
<td>Disyuntor 2 (CB2) - 20 A</td>
</tr>
<tr>
<td>5</td>
<td>No se usa</td>
<td>12</td>
<td>Disyuntor 3 (CB3) - 30 A</td>
</tr>
<tr>
<td>6</td>
<td>Relé de encendido de la grúa</td>
<td>13</td>
<td>Disyuntor 4 (CB4) - 15 A</td>
</tr>
<tr>
<td>7</td>
<td>Relé de control de estabilizadores</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SOLENOIDES DE COLECTOR DE GRÚA

Los solenoides RCL y dispositivo de prevención de contacto entre bloques se encuentran en el colector de bloqueo del RCL de seis secciones (A, Figura 3-9). Los solenoides de RCL y dispositivo de prevención de contacto entre bloques inhabilitan las funciones de la grúa que pueden empeorar una condición de vuelco inminente o de contacto entre bloques. Las funciones que se mencionan a continuación quedan inhabilitadas cuando se desactivan los solenoides.

- Elevación de malacate principal
- Cilindro telescópico de la pluma — Extensión de la pluma
- Elevación de malacate auxiliar (opcional)
- Retracción del cilindro de elevación — Bajada de la pluma

Los solenoides del colector de la grúa se encuentran en la válvula del colector piloto (B, Figura 3-9) y sirven para las funciones dadas a continuación.

- Alimentación de funciones de la grúa — habilita todas las funciones de la grúa al activarla (cuando las funciones no están bloqueadas por el RCL).
- Aire acondicionado — pone en marcha el compresor del aire acondicionado al activarlo.
- Freno de giro — aplica presión para soltar el freno de estacionamiento del mecanismo de giro al activarlo.
- Válvula de alivio de función aérea A92 — provee funciones de presión reducida para la elevación, la extensión y la retracción telescópica de la función de elevación aérea cuando está desenergizada. Cuando está energizada provee la función de presión plena para el funcionamiento de la grúa.

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Válvula de solenoide</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bajada de la pluma</td>
</tr>
<tr>
<td>2</td>
<td>Bajada del malacate</td>
</tr>
<tr>
<td>3</td>
<td>Elevación del malacate</td>
</tr>
<tr>
<td>4</td>
<td>Extensión telescópica</td>
</tr>
<tr>
<td>5</td>
<td>Elevación de malacate auxiliar (opcional)</td>
</tr>
<tr>
<td>6</td>
<td>Bajada de malacate auxiliar (opcional)</td>
</tr>
<tr>
<td>7</td>
<td>Liberación del freno de giro</td>
</tr>
<tr>
<td>8</td>
<td>Aire acondicionado</td>
</tr>
<tr>
<td>9</td>
<td>Válvula de alivio de función aérea A92</td>
</tr>
<tr>
<td>10</td>
<td>Alimentación de la grúa/Habilitación de HRC</td>
</tr>
</tbody>
</table>

A Colector de bloqueo de RCL
B Colector piloto
Antes de sustituir un relé o solenoide, revise si su conector tiene corrosión. Limpie el conector con papel de lija fino y lubrique lo con grasa aislante. No utilice grasa no aislante. La grasa no electrolítica aísla la conexión y evita el funcionamiento del relé.

<table>
<thead>
<tr>
<th>Problema</th>
<th>Causa</th>
<th>Solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>El solenoide de RCL/dispositivo de prevención de contacto entre bloques no se activa.</td>
<td>Fusible F7 abierto</td>
<td>Revise el fusible F7 en la caja de micro relés/fusibles 2 para verificar la continuidad. Sustituya si está averiado.</td>
</tr>
<tr>
<td></td>
<td>Avería de interruptores de anulación del RCL/dispositivo de prevención de contacto entre bloques</td>
<td>Verifique que los interruptores de anulación de RCL funcionan correctamente.</td>
</tr>
<tr>
<td></td>
<td>Avería de relé de interbloqueo del RCL/dispositivo de prevención de contacto entre bloques</td>
<td>Pruebe el borne B10 (cable 12) del relé de interbloqueo del RCL (R4 en la caja de micro relés/fusibles 3) para verificar el voltaje de la batería. Si hay voltaje de la batería, pruebe la continuidad a tierra del relé en el borne D9 (cable 51). Si la conexión es correcta, sustituya el relé.</td>
</tr>
<tr>
<td></td>
<td>Avería de interruptor de funciones de la grúa</td>
<td>Verifique el voltaje de la batería en la clavija 2 (cable 41) del interruptor de funciones de la grúa mientras está sentado en el asiento del operador. Si hay voltaje de batería, verifique el voltaje de la batería en la clavija 4 (cable 12) del interruptor de funciones de la grúa. Si no hay voltaje de batería, sustituya el interruptor de funciones de grúa.</td>
</tr>
<tr>
<td></td>
<td>Solenoide de RCL/dispositivo de prevención de contacto entre bloques averiado</td>
<td>Verifique si hay continuidad en el solenoide. Sustituya si está averiado.</td>
</tr>
<tr>
<td>El relé del indicador de vueltas mínimas (MWI) no se energiza.</td>
<td>Fusible F3 abierto</td>
<td>Revise el fusible F3 en la caja de micro relés/fusibles 4 para verificar la continuidad. Sustituya si está averiado.</td>
</tr>
<tr>
<td></td>
<td>Fusible F5 abierto</td>
<td>Revise el fusible F5 en la caja de micro relés/fusibles 3 para verificar la continuidad. Sustituya si está averiado.</td>
</tr>
<tr>
<td></td>
<td>Fusible de alimentación abierto</td>
<td>Revise el fusible de alimentación de 80 A en el punto de alimentación para verificar la continuidad. Sustituya si está averiado.</td>
</tr>
<tr>
<td></td>
<td>Relé MWI averiado</td>
<td>Pruebe el receptáculo del relé de MWI (R1 en la caja de micro relés/fusibles 1) para verificar el voltaje de batería en la clavija B2 (cable 820). Si hay voltaje de batería, pruebe la clavija D1 del receptáculo del relé MWI (cable 824) para verificar la continuidad a la clavija 5 del conector del interruptor de MWI. Si el cable está bueno, revise el funcionamiento del interruptor de MWI. Si el interruptor de MWI está bueno, sustituya el relé de MWI.</td>
</tr>
<tr>
<td></td>
<td>Interruptor de MWI averiado</td>
<td>Verifique que el interruptor de LLI funcione correctamente. Sustituya si está averiado.</td>
</tr>
<tr>
<td></td>
<td>Solenoide de RCL/dispositivo de prevención de contacto entre bloques averiado</td>
<td>Verifique si hay continuidad en el solenoide. Sustituya si está averiado.</td>
</tr>
<tr>
<td>Problema</td>
<td>Causa</td>
<td>Solución</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>El relé de grúa/control remoto no se energiza.</td>
<td>Fusible F10 en el bloque de micro fusibles</td>
<td>Revise el fusible F10 en la caja de micro relés/fusibles 2 para verificar la continuidad. Sustituya si está averiado.</td>
</tr>
<tr>
<td>Avería de interruptor de funciones de la grúa</td>
<td>Verifique el voltaje de la batería en la clavija 2 (cable 41) del interruptor de funciones de la grúa mientras está sentado en el asiento del operador. Si hay voltaje de batería en la clavija 2 (cable 41), verifique el voltaje de la batería en la clavija 4 (cable 12) del interruptor de funciones de la grúa. Si no hay voltaje de batería en la clavija 4 (cable 12), sustituya el interruptor de alimentación de la grúa.</td>
<td></td>
</tr>
<tr>
<td>Relé de grúa/control remoto averiado</td>
<td>Pruebe el borne B10 (cable 12) del relé de grúa/control remoto (R5 en la caja de micro relés/fusibles 3) para verificar el voltaje de la batería. Si hay voltaje de la batería, pruebe la continuidad a tierra del relé en el borne D9 (cable 51). Si la conexión es correcta, sustituya el relé.</td>
<td></td>
</tr>
</tbody>
</table>
COLECTORES DE ESTABILIZADORES

Hay dos colectores de estabilizadores ubicados en el chasis del vehículo. El colector de estabilizadores delanteros se monta en el centro de la caja de estabilizadores delanteros (Figura 3-10) y el colector de estabilizadores traseros se monta en el centro de la parte trasera del camión, debajo de la caja de torsión (Figura 3-11).

Colector de estabilizadores delanteros

Los solenoides del colector de estabilizadores delanteros controlan la selección de los componentes de los estabilizadores delanteros, el estabilizador de gatos delantero sencillo (SFO), las funciones de extensión y retracción de todos los estabilizadores y el caudal hidráulico enviado al circuito de estabilizadores.

Los solenoides del colector de estabilizadores delanteros proporcionan las funciones siguientes:

- El solenoide de estabilizador delantero sencillo (SFO) (Figura 3-10) extiende o retrae el estabilizador delantero sencillo (SFO) cuando se energiza. Toda vez que se oprime el interruptor de retracción en la caja de control de estabilizadores, el estabilizador delantero sencillo (SFO) es el primero en elevarse.
- Los solenoides de componentes (2 al 5) regulan los componentes de los estabilizadores delanteros. Vea la Figura 3-10 para la identificación de solenoides.
- Los solenoides de extensión (6) y retracción (7) regulan las funciones de extensión y retracción de todos los componentes de los estabilizadores delanteros y traseros.

<table>
<thead>
<tr>
<th>Art.</th>
<th>Descripción</th>
<th>Art.</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solenoide de gato de estabilizadores del lado del conductor</td>
<td>5</td>
<td>Solenoide de gato de estabilizadores del lado del pasajero</td>
</tr>
<tr>
<td>2</td>
<td>Solenoide de viga de estabilizadores del lado del conductor</td>
<td>6</td>
<td>Solenoide de extensión de estabilizadores</td>
</tr>
<tr>
<td>3</td>
<td>Solenoide de estabilizador delantero sencillo (SFO)</td>
<td>7</td>
<td>Solenoide de retracción de estabilizadores</td>
</tr>
<tr>
<td>4</td>
<td>Solenoide de viga de estabilizadores del lado del pasajero</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Colector de estabilizadores traseros

Los solenoides del colector trasero regulan la selección de los componentes de los estabilizadores traseros. Vea la Figura 3-11 (1 al 4) para la identificación de solenoides.

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Solenoide</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Estabilizador de lado del conductor</td>
</tr>
<tr>
<td>2</td>
<td>Viga de lado del conductor</td>
</tr>
<tr>
<td>3</td>
<td>Viga de lado del pasajero</td>
</tr>
<tr>
<td>4</td>
<td>Estabilizador de lado del pasajero</td>
</tr>
</tbody>
</table>

FIGURA 3-11
ENFRIADOR DE ACEITE HIDRÁULICO

El enfriador de aceite hidráulico (3, Figura 3-12) se monta en el apoyo de la pluma. Un ventilador eléctrico en la caja del enfriador hace circular una corriente de aire a través del núcleo enfriador cuando el aceite hidráulico alcanza una temperatura de 49°C (120°F).

No todo el caudal de retorno pasa por el enfriador del aceite. Una válvula de retención de 2 bar (30 psi) limita el caudal que pasa por el enfriador. Puesto que el aceite hidráulico es más espeso cuando está frío, se envía menos aceite a través del enfriador cuando está frío que cuando está caliente.

El sistema eléctrico del enfriador está compuesto por el ventilador eléctrico (1, Figura 3-12), el sensor de temperatura (2) y el relé del ventilador.

El sensor de temperatura (2) se encuentra en el núcleo enfriador y activa el relé del ventilador cuando la temperatura del aceite hidráulico llega a 49°C (120°F). El relé del ventilador se encuentra en el módulo del VEC (Figura 3-8) y activa el ventilador cuando recibe alimentación. Si el ventilador no funciona cuando el aceite hidráulico está caliente, revise el sensor de temperatura, el relé del enfriador de aceite (2, Figura 3-8) y el motor del ventilador.

NOTA: El ventilador funciona continuamente si el sensor se avería.

LUZ DE ADVERTENCIA DEL SENSOR DE TEMPERATURA DEL ACEITE HIDRÁULICO

Una luz en la consola de la cabina de la grúa se ilumina cuando la temperatura del aceite hidráulico excede el valor máximo recomendado. Un sensor ubicado en la lumbrera número 4 del adaptador giratorio hidráulico supervisa la temperatura del aceite de retorno y enciende la luz cuando la temperatura del aceite hidráulico alcanza los 82°C (180°F). Si la luz no se ilumina, revise la bombilla y el sensor de temperatura de la lumbrera número 4 del adaptador giratorio.

SISTEMA DE MONITOREO DE ESTABILIZADORES (OMS)

Para obtener más información sobre el sistema de monitoreo de estabilizadores. Vea “Sistema de monitoreo de estabilizadores (OMS)” en la página 7-9.

SISTEMA DE MONITOREO DE GATOS DE ESTABILIZADORES (OPCIONAL)

Para obtener más información sobre el sistema de monitoreo de gatos de estabilizadores. Vea “Sistema de monitoreo de gatos de estabilizadores (opcional)” en la página 7-10.
ESTA PÁGINA HA SIDO DEJADA EN BLANCO INTENCIONALMENTE
SECCIÓN 4
MANTENIMIENTO DE LA PLUMA

CONTENIDO DE LA SECCIÓN

<table>
<thead>
<tr>
<th>Pluma de cuatro secciones</th>
<th>4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retiro de la pluma</td>
<td>4-2</td>
</tr>
<tr>
<td>Desarmado de la pluma de cuatro secciones</td>
<td>4-3</td>
</tr>
<tr>
<td>Mantenimiento adicional (pluma desarmada)</td>
<td>4-10</td>
</tr>
<tr>
<td>Tensión de cable de cuatro secciones</td>
<td>4-17</td>
</tr>
<tr>
<td>Retención de cable</td>
<td>4-18</td>
</tr>
<tr>
<td>Sustitución de almohadillas superiores e inferiores de la pluma de cuatro secciones (armada)</td>
<td>4-19</td>
</tr>
<tr>
<td>Pluma de cinco secciones</td>
<td>4-23</td>
</tr>
<tr>
<td>Retiro de la pluma</td>
<td>4-24</td>
</tr>
<tr>
<td>Desarmado de la pluma de cinco secciones</td>
<td>4-25</td>
</tr>
<tr>
<td>Mantenimiento adicional (pluma desarmada)</td>
<td>4-36</td>
</tr>
<tr>
<td>Armado de la pluma de cinco secciones</td>
<td>4-36</td>
</tr>
<tr>
<td>Tensión de cable de cinco secciones</td>
<td>4-44</td>
</tr>
<tr>
<td>Retención de cable</td>
<td>4-46</td>
</tr>
<tr>
<td>Sustitución de almohadillas superiores e inferiores de la pluma de cinco secciones (armada)</td>
<td>4-47</td>
</tr>
<tr>
<td>Calibración de la pluma</td>
<td>4-49</td>
</tr>
<tr>
<td>Almohadillas de desgaste laterales interiores</td>
<td>4-49</td>
</tr>
<tr>
<td>Almohadillas de desgaste traseras inferiores</td>
<td>4-50</td>
</tr>
<tr>
<td>Cilindro hidráulico</td>
<td>4-51</td>
</tr>
<tr>
<td>Armado del cilindro</td>
<td>4-52</td>
</tr>
<tr>
<td>Plúmn de la pluma</td>
<td>4-53</td>
</tr>
<tr>
<td>Ajuste de la escuadra de almacenamiento del plúmn</td>
<td>4-53</td>
</tr>
<tr>
<td>Servicio y mantenimiento del gato del plúmn</td>
<td>4-55</td>
</tr>
</tbody>
</table>

PLUMA DE CUATRO SECCIONES

Consulte la Figura 4-1 para ver la referencia.

Un cilindro de dos etapas, alimentado por varilla y de efecto doble se conecta a las secciones TEL N.° 1 y TEL N.° 2 de la pluma y las sostiene.

Los cables de extensión 2/3/4 se conectan a la parte trasera de la sección TEL N.° 1 de la pluma, se enhebran alrededor de las poleas de la parte delantera de la sección TEL N.° 2 de la pluma, luego se conectan a la parte trasera, y sujetan la sección TEL N.° 3 de la pluma.

Los cables de retracción 4/3/2 se conectan a la parte trasera de la sección TEL N.° 3 de la pluma, se enhebran alrededor de las poleas de la parte trasera de la sección TEL N.° 2 de la pluma, luego se conectan a la parte delantera de la sección TEL N.° 1 de la pluma.

Los cables de extensión 1/2/3 se conectan a la parte trasera de la sección de base de la pluma, se enhebran alrededor de las poleas de la parte delantera de la sección TEL N.° 1 de la pluma, luego se conectan a la parte trasera de la sección TEL N.° 2 de la pluma.

Los cables de retracción 3/2/1 se conectan a la parte trasera de la sección TEL N.° 2 de la pluma, se enhebran alrededor de las poleas de la parte trasera de la sección TEL N.° 1 de la pluma, luego se conectan a la parte delantera de la sección de base de la pluma.

Los cables de retracción 3/2/1 se oponen directamente a los cables de extensión 1/2/3 para asegurar que las secciones TEL N.° 1 y TEL N.° 2 de la pluma se extiendan y retraigan de modo uniforme en todo momento. Los cables de retracción 4/3/2 se oponen directamente a los cables de extensión 2/3/4 para asegurar que las secciones TEL N.° 2 y TEL N.° 3 de la pluma se extiendan y retraigan de modo uniforme en todo momento.

Se considera que un conjunto de pluma está debidamente sincronizado cuando las secciones telescópicas se extienden igualmente con respecto a la otra y topan simultáneamente a retracción plena y no retroceden hasta después que la presión de retracción vuelva a punto muerto.

La construcción hidráulica del cilindro de extensión determina qué sección extensible se controla primero o segundo. Las secciones de extensión deberán ajustarse mediante el ajuste del cable.

Un cilindro de etapa sencilla controla la primera sección extensible.

Un cilindro de etapa doble controla la segunda sección extensible.

La secuencia de sincronización de los cables depende del número de secciones y de la construcción del cilindro de extensión.

El propósito del diseño del tensado de cables es equilibrar la precarga de los cables de extensión y retracción para cada sección extensible. Además, la secuencia de las secciones durante la retracción requiere que los cables de retracción de cada sección estén alineados entre sí.
MANTENIMIENTO DE LA PLUMA

Consulte la Figura 4-1, Figura 4-9 y la Figura 4-13 para el retiro, desarmado, armado y tensión del cable de la pluma.

Retiro de la pluma

Para el peso de la pluma, vea “Especificaciones” en la Sección 9 de este manual.

1. Extienda y emplace los estabilizadores de la grúa y el estabilizador delantero sencillo (SFO). La pluma debe estar completamente retractada y almacenada en el apoyo de la pluma sobre la parte delantera del camión.

2. Si lo tiene, retire el plumín giratorio según los procedimientos descritos en la Sección 6, Preparación del equipo del manual del operador.

3. Retire el aparejo de gancho o el peso de la línea de tensión, enrolle el cable en el tambor del malacate y almacene el receptáculo de cuña (estribo de suspensión) en las espigas provistas en la sección de base de la pluma. Apague el motor del camión.

4. Fije un dispositivo de levante al contrapeso para obtener una distribución uniforme del peso y eleve el contrapeso hasta quitar el peso del pasador de pivote de la pluma. Retire la tornillería de retención de contrapeso del pasador de pivote de la pluma y baje el contrapeso hasta que descanses sobre la caja de estabilizadores traseros.

5. Fije un dispositivo de levante al extremo de la varilla del cilindro de elevación, retire el retenedor y el pasador del cilindro de elevación de la parte inferior de la sección de base de la pluma. Baje el extremo de la varilla del cilindro de elevación a la plataforma.

6. Marque y desconecte las líneas del cilindro de extensión y las líneas hidráulicas y eléctricas del malacate. Tape todas las aberturas. Desenchufe el cable del dispositivo de prevención del contacto entre bloques/RCL del receptáculo de la torreta.

8. Fije un dispositivo de levante para obtener una distribución uniforme del peso y eleve la pluma hasta quitarle el peso del pasador de pivote de la pluma. Retire el retenedor y el pasador de pivote de la pluma. Levante la pluma para soltarla de la torreta.

9. Si se requiere mantenimiento, consulte “Mantenimiento adicional (pluma desarmada)” en la página 4-10.
Desarmado de la pluma de cuatro secciones

Como referencia, la parte delantera es el extremo de la caja de poleas (Vista A) y la parte trasera es el extremo de montaje del malacate (Vista B). Los lados izquierdo y derecho se identifican mirando desde la parte trasera hacia la delantera. Vea la Figura 4-2 para el procedimiento siguiente.

NOTA: Todas las almohadillas de desgaste deben marcarse, inspeccionarse y rearmarse exactamente al estado en que se quitaron, a menos que se vaya a hacer un reacondicionamiento completo.

Los pasos del 1 al 3 corresponden a una pluma que va a desarmarse dejando la sección de base de la pluma y el plumín (si lo tiene) instalados en la grúa. Todos los demás pasos corresponden a una pluma que se retira de la grúa. Vea “Retiro de la pluma” en la página 4-2.

1. Extienda y emplace los estabilizadores y el estabilizador delantero sencillo (SFO).
2. Retraiga la pluma completamente y colóquela en posición horizontal.
3. Marque y desconecte las líneas hidráulicas del cilindro telescópico. Tape todas las líneas y aberturas.
4. Retire los pernos (2, Vista B) y las arandelas (3) que sujetan la varilla del cilindro de extensión de la sección de base de la pluma a la parte trasera (4) de la sección de base de la pluma (1). Repita en el otro lado.
5. Marque la posición de las tuercas (6, 13 y 14) (si las tiene) y la arandela (7) que fijan los cables de extensión 1/2/3 (8) a la parte trasera (4) de la sección de base de la pluma (1). Quita las tuercas y arandelas de los cables de extensión 1/2/3 en la parte trasera de la sección de base de la pluma. Marque y rotule los cables, y deje los extremos de los cables colgando dentro de la pluma.
6. Retire los pernos (10, Vista A), la arandela (9) y la cubierta de inspección (11) de la parte superior trasera de la sección de base de la pluma (1).
7. Conecte una eslina o cadena a la punta de la sección TEL N.° 1 de la pluma (12, Vista A) y tire de la sección TEL N.° 1 de la pluma (con las secciones TEL N.° 2 y TEL N.° 3 de la pluma) aproximadamente un pie o hasta que el agujero de inspección en todas las secciones de pluma se alinee con los conjuntos de almohadillas de desgaste superiores correspondientes a todas las secciones de la pluma.
Vea la Figura 4-3 para los pasos siguientes.

NOTA: Todas las almohadillas de desgaste deben marcarse, inspeccionarse y rearmarse exactamente al estado en que se quitaron.

8. Retire el perno (1), la arandela (2) y la placa de la leva (3) de la sección TEL N.° 1 de la pluma.

9. Retire los pernos (4), las arandelas (5) y la placa retenedora de almohadilla de desgaste (6).

10. Retire la almohadilla de desgaste superior (7) de la parte superior de cada sección de la pluma. Repita en el otro lado y en las secciones de pluma restantes que se retiren.
Vea la Figura 4-4 para los pasos siguientes.

11. Retire y rotule la tuerca de fijación (1), la arandela de seguridad (2) y el perno (3) en la parte delantera de la sección de base de la pluma. Afloje la contratuerca de ajuste de la almohadilla de desgaste (5) y el perno (4). Rotule y quite las almohadillas de desgaste (8), las placas de respaldo (6) y las placas de respaldo de almohadilla de desgaste (7).

12. Saque el perno (11), la arandela de seguridad (12) y la arandela plana (13). Rotule y retire la placa superior (9) y los suplementos (10) de la parte delantera de la sección de base de la pluma.

13. Retire los pernos (16) del costado de la sección de base de la pluma. Rotule y retire las dos almohadillas de desgaste superiores (19) y los suplementos (17 y 18) de la parte delantera de la sección de base de la pluma.

14. Retire el protector de cable (25) y afloje la contratuerca de ajuste del cable (20) y la tuerca (21) en los cables de retracción 3/2/1 inferiores delanteros (22). Saque los cuatro pernos (23) que fijan las placas de anclaje de los cables de retracción 3/2/1 (24) a la punta inferior de la sección de base de la pluma.

15. Tire de los anclajes de cables de retracción y mantenga los cables de retracción tensos mientras tira de la sección TEL N.° 1 (con las secciones TEL N.° 2 y TEL N.° 3) de la pluma para sacarla de la sección de base de la pluma. Tire parcialmente de la sección TEL N.° 1 de la pluma del conjunto de pluma hasta que la parte delantera de la pluma pueda elevarse lo suficiente como para quitar y rotular las almohadillas de desgaste inferiores (15) y los tornillos de cabeza hueca (14) de la parte inferior delantera de la sección de base de la pluma. Apoye el extremo trasero de la sección TEL N.° 1 de la pluma a medida que sale de la sección de base de la pluma.
16. Coloque la sección TEL N.° 1 (con las secciones TEL N.° 2 y TEL N.° 3) de la pluma en una superficie hori-

tal adecuada.

NOTA: Procure no comprimir ni aplastar los cables de retracción mientras eleva o sostiene la sección TEL N.° 1 de la pluma.

17. Rotule y retire las almohadillas de desgaste traseras (2) y los suplementos (3) de la parte trasera de la sección TEL N.° 1 de la pluma (1), si se sustituyen.

18. Retire el perno (4) y el rodillo guía del cable de retracción (5) de cada lado de la parte trasera inferior de la sección TEL N.° 1 de la pluma.

19. Retire los dos tornillos de fijación (6) que retienen el pasador de polea de retracción (7). Tire del pasador de polea de retracción con las poleas de retracción (8), el cojinete (9), los espaciadores (10) y el anillo elástico (11) para sacarlos de su ranura en la parte trasera de la sección TEL N.° 1 de la pluma. Elimine las rebabas que estén presentes en los extremos planos del pasador para evitar los daños producidos al cojinete de la polea al quitar las poleas del pasador.

20. Rotule y retire los cuatro pernos (15), la almohadilla de desgaste inferior (16) y los suplementos (17), si se susti-

21. Retire los dos pernos (12), la escuadra retenedora de cable de retracción (13) y el conjunto de anclaje de cables (14) de la parte trasera inferior de la sección TEL N.° 2 de la pluma. Almacene los cables de retracción 3/2/1, que ahora se encuentran libres, en una zona que evite que sufran daños durante el desarmado posterior de la pluma.

FIGURA 4-5

<table>
<thead>
<tr>
<th>Art.</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sección TEL N.° 1 de la pluma</td>
</tr>
<tr>
<td>2</td>
<td>Almohadilla de desgaste trasera</td>
</tr>
<tr>
<td>3</td>
<td>Suplemento</td>
</tr>
<tr>
<td>4</td>
<td>Perno</td>
</tr>
<tr>
<td>5</td>
<td>Rodillo guía de cable de retracción</td>
</tr>
<tr>
<td>6</td>
<td>Tornillo de fijación</td>
</tr>
<tr>
<td>7</td>
<td>Pasador de polea de retracción</td>
</tr>
<tr>
<td>8</td>
<td>Polea de retracción</td>
</tr>
<tr>
<td>9</td>
<td>Cojinete</td>
</tr>
<tr>
<td>10</td>
<td>Espaciador</td>
</tr>
<tr>
<td>11</td>
<td>Anillo elástico</td>
</tr>
<tr>
<td>12</td>
<td>Perno</td>
</tr>
<tr>
<td>13</td>
<td>Escuadra retenedora de cable de retracción</td>
</tr>
<tr>
<td>14</td>
<td>Conjunto de anclaje de cable</td>
</tr>
<tr>
<td>15</td>
<td>Perno</td>
</tr>
<tr>
<td>16</td>
<td>Almohadilla de desgaste inferior</td>
</tr>
<tr>
<td>17</td>
<td>Suplemento</td>
</tr>
<tr>
<td>18</td>
<td>Orejetas de montaje del cilindro</td>
</tr>
</tbody>
</table>
Vea la Figura 4-6 para los pasos siguientes.

22. Marque la posición de las tuercas (2, 3 y 27) (si las tiene) que fijan los cables de extensión 2/3/4 (1) a la parte trasera de la sección TEL N.° 1 de la pluma. Retire los dos tornillos de cabeza hueca (5), las tuercas y el conjunto de anclaje de cables (4) de la parte trasera/superior de la sección TEL N.° 1 de la pluma.

23. Retire los dos tornillos de cabeza plana (6) que retienen la almohadilla de desgaste (7) en el conjunto de anclaje de cables (4) conectado a la parte trasera de la sección TEL N.° 1 de la pluma.

24. Fije una eslinga o cadena a la punta de la sección TEL N.° 2 de la pluma y tire de la sección TEL N.° 2 (con la sección TEL N.° 3) de la pluma aproximadamente un pie. Retire y rotule los pernos (28) y las dos almohadillas de desgaste superiores e inferiores (8) con los suplementos (9 y 10) de la parte delantera de la sección TEL N.° 1 de la pluma.

25. Retire y rotule las dos almohadillas de acero interiores superiores (11) y los suplementos (12) de la punta de la sección TEL N.° 1 de la pluma.

26. Retire y rotule la guía de cables (13), la tornillería (14-17) y la almohadilla de desgaste (18) ubicada en la parte superior de la parte delantera de la sección TEL N.° 1 de la pluma.

27. Deslice el conjunto del anclaje de la polea (20) hacia afuera de la parte delantera de la sección TEL N.° 1 de la pluma. Retire los cojinetes (21), las poleas (22), las graseras (19) y los pasadores (23) del conjunto de anclaje de poleas y permita que el conjunto de placas (29) y el conjunto de cables (24) descansen sobre la parte superior de la sección TEL N.° 2 de la pluma.

28. Levante la parte delantera de la pluma y retire los pernos (26) y las almohadillas de desgaste (25) de entre la parte frontal inferior de las secciones TEL N.° 1 y TEL N.° 2 de la pluma. Tire de los anclajes de cables de retracción y mantenga los cables de retracción tensos mientras tira de las secciones TEL N.° 2 y TEL N.° 3 de la pluma para sacarlas de la sección TEL N.° 1 de la pluma.

29. Coloque las secciones TEL N.° 2 y TEL N.° 3 de la pluma en una superficie horizontal adecuada.
NOTA: Procure no comprimir ni aplastar los cables de retracción mientras levanta o sostiene la sección TEL N.° 2 de la pluma.

30. Retire el cable de extensión de 1/2/3 de la posición de descanso en la parte superior de la parte trasera de sección TEL N.° 2 de la pluma. Deslice la polea (4) hacia la parte trasera de la pluma y quítele.

31. Rotule y retire las almohadillas de desgaste traseras (2) y los suplementos (3) de la parte trasera de la sección de la pluma. Rotule y retire los pernos (16), la almohadilla de desgaste inferior (17) y los suplementos (18). Rotule y quite los pernos (19), la almohadilla de desgaste superior (20), la arandela plana (21), las placas retenedoras de la almohadilla de desgaste (22) y la placa de leva (23).

32. Retire el perno (5) y el rodillo guía del cable de retracción (6) de cada lado de la parte trasera inferior de la sección de la pluma. Retire los pernos (13), la escuadra retenedora de cable (14) y el retenedor de cable (15).

33. Retire el pasador de polea (8) con las poleas (9), las graseras (7), el cojinete (10), los espaciadores (11) y los anillos elásticos (12) ensamblados de vuelta y fuera de su ranura en la parte trasera de la sección de la pluma. Elimine las rebabas que estén presentes en los extremos planos del pasador para evitar los daños producidos al cojinete de la polea al quitar la polea del cilindro.

34. Rotule y retire los pernos (29, 30 y 35), las arandelas (31 y 32), la guía del cable (33), las almohadillas de desgaste (34, 37 y 38) y el suplemento (36).

35. Retire los dos pernos (26), las arandelas de seguridad (27) y los retenedores (28) del cilindro.
36. Conecte una eslinga a la parte trasera del cilindro de extensión y extráigalo de la sección TEL N.° 2 de la pluma aproximadamente un pie manteniendo los cables de extensión 2/3/4 tensos. Eleve el cilindro de extensión aproximadamente 127 mm (5 pulg).

37. Empuje el anclaje de retracción 4/3/2 (18) hacia adelante para sacarlo de su ranura en la parte trasera inferior de la sección TEL N.° 3 de la pluma y retire la sección TEL N.° 3 de la pluma con la almohadillas de desgaste (16) instalada. Retire los cables de retracción 4/3/2 del anclaje de retracción 4/3/2 (18) y almacénelos en una zona donde no sufran daños durante el desarmado posterior de la pluma.

38. Tire del pasador (15) con los cables (14) como un conjunto fuera de la ranura en la parte trasera inferior de la sección TEL N.° 3 de la pluma y cubra la parte trasera de la sección TEL N.° 2 de la pluma.
39. Baje el cilindro a su posición original. Fije una eslinga o cadena a la punta de la sección TEL N.° 3 de la pluma y tire de la sección TEL N.° 3 de la pluma para sacarla de la sección TEL N.° 2 de la pluma aproximadamente un pie. Retire el cilindro de extensión de la pluma, manteniendo los cables de extensión 2/3/4 (14) tensos.

40. Retire los pernos (30), las varillas (35) y la placa (29) de la caja delantera de poleas del cilindro. Retire las poleas (32) y los cojinetes (33) del cilindro de extensión, quitando los dos pernos (27) y el retenedor (28) del pasador de polea (26) y golpeando suavemente el pasador mientras quita las poleas de la punta del cilindro de extensión.

41. Retire los cables de extensión 2/3/4 (14) del pasador (15) y almacene los cables y el cilindro de extensión en una área donde no se dañen durante el desarmado posterior de la pluma.

42. Coloque la sección TEL N.° 3 de la pluma en una superficie horizontal adecuada. Procure no estrujar ni aplastar los cables de extensión y retracción mientras eleva o soporta la sección TEL N.° 3 de la pluma.

43. Rotule y retire los pernos (23), las almohadillas de desgaste (22) y los suplementos (21) de la parte trasera de la sección TEL N.° 3 de la pluma. Rotule y retire los pernos (10, 17 y 25), las arandelas (11), los suplementos (19), las placas de almohadilla de desgaste (12), las placas de leva (13) y las almohadillas de desgaste (9, 16, 20, 24 y 31).

44. Retire las poleas del cable de carga (6) quitando los pernos (1), las arandelas de seguridad (2), el retenedor (3), los cojinetes (5) y los espaciadores (4 y 7) de los pasadores de la polea (8 y 34). Retire los pasadores de las poleas golpeando ligeramente el pasador mientras retira las poleas y los espaciadores hasta que todas las poleas se hayan retirado de la parte delantera de la pluma.

Mantenimiento adicional (pluma desarmada)

1. Limpie todas las secciones de la pluma e inspecciónelas en busca de desgaste, abolladuras, secciones dobladas o deformadas, metal acanalado, soldaduras rotas y toda condición anormal. Repare o reemplace según sea necesario.

2. Inspeccione todas las poleas en busca de desgaste excesivo de sus ranuras o desgaste anormal de sus aros. Reemplace según sea requerida.

3. Inspeccione todos los cojinetes de poleas en busca de desgaste excesivo o cortaduras en el forro interior. Si el diámetro del cojinete instalado es 0.38 mm (0.015 pulg) mayor que el diámetro del pasador, es necesario sustituir el cojinete. Toda cortadura o acanaladura que haga que el forro del cojinete pierda hilos es motivo para sustituirlo.

4. Limpie e inspeccione todos los conjuntos de cable según los procedimientos de inspección de cables dados en esta sección. Preste atención particular a la presencia de alambres rotos en las conexiones de los extremos. Reemplace los conjuntos de cable según se requiera. Lubrique los conjuntos de cable según se requiera. Lubrique todos los conjuntos de cable antes de volverlos a instalar en la pluma.

5. Inspeccione todos los pasadores de polea en busca de melladuras, acanaladuras o picaduras debidas a la formación de herrumbre en la superficie de soporte del cojinete. Reemplácelos si se observan daños.

6. Inspeccione todas las graseras y trayectorias de engrase de los pasadores para asegurar que la grasa fluya debidamente. Limpie y reemplace según se requiera.

7. Inspeccione todas las almohadillas de desgaste en busca de acanaladuras o desgaste desigual en la superficie. Reemplácelos si se observan daños. Reemplace todos los tapones de lubricación en todas las almohadillas de desgaste, según sea necesario.

8. Aplique grasa universal (MPG) a todas las superficies de las almohadillas de desgaste.

Conjunto de la pluma

Aplique pasta adhesiva/selladora de roscas de resistencia mediana Loctite® tipo 243 de acuerdo con las recomendaciones de Loctite a toda la tornillería y apriete.

No aplique pasta Loctite® a ninguno de los extremos roscados de cables. Siempre utilice las contratuercas y/o tuercas provistas.

Instale los cables en su condición natural sin retores- ceduras. No retuerza los cables. Si se retuerzan los cables causarán daño o la falla del cable. Durante el armado inicial de los extremos roscados de cables, enrosque la primera tuercas más allá de la parte plana para poder efectuar el ajuste posteriormente.

Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

NOTA: La parte delantera es el extremo de la caja de poleas, la parte trasera es el extremo en donde se monta el malacate y los lados izquierdo y derecho se identifican mirando desde la parte trasera a la delantera.
Conjunto de sección TEL N.° 3 de la pluma

Vea la Figura 4-8 para el procedimiento siguiente.

1. Ensamble las poleas del cable de carga superior (6) y los cojinetes (5) en la caja de poleas de la sección TEL N.° 3 de la pluma.
 a. Instale el pasador de polea (8) en el lado izquierdo de la caja de poleas superiores.
 NOTA: Instale los espaciadores pequeños (7) entre las poleas y entre las poleas y las placas laterales.
 b. Instale el espaciador pequeño (7).
 c. Instale el cojinete (5) y la polea de cable de carga (6) cerca de las placas laterales de la caja de poleas con la grasera orientada hacia la placa lateral para permitir la lubricación.
 d. Instale el espaciador (4).
 e. Instale el cojinete central (5) y la polea del cable de carga (6) con la grasera orientada hacia cualquier lado.
 f. Instale el cojinete superior (5) y la polea del cable de carga (6) en el lado izquierdo de la pluma con el espaciador (7) hacia el lado derecho.
 g. Instale los retenedores (3) a ambos lados de la caja de poleas utilizando un perno (1) y una arandela de seguridad (2). Apriete el perno de acuerdo a las especificaciones. Vea “Sujetadores y valores de apriete” en la página 1-7.

2. Ensamble las poleas del cable de carga inferior (6) y los cojinetes (5) en la caja de poleas de la sección TEL N.° 3 de la pluma.
 a. Instale el pasador de polea (34) en el lado izquierdo de la caja de poleas.
 NOTA: Instale espaciadores entre las poleas y entre las poleas y las placas laterales.
 b. Instale el espaciador (7).
 c. Instale las poleas (6) y los cojinetes (5) lo más cerca de las placas laterales de la caja de poleas con la grasera orientada hacia la placa lateral para permitir la lubricación.
 d. Instale el espaciador pequeño (7).
 e. Instale las poleas centrales (6) con la grasera orientada hacia cualquier lado.
 f. Instale las poleas (6) en el lado derecho de la pluma.
 g. Instale el espaciador (7).
 h. Instale el brazo hacia el exterior de la caja de poleas.
 i. Instale los retenedores (3) en el lado derecho de la caja de poleas utilizando un perno (1) y una arandela de seguridad (2).
 j. Instale los retenedores (3) en el lado izquierdo de la caja de poleas utilizando un perno (1) y una arandela de seguridad (2).
 k. Instale el tubo en la caja de poleas delanteras inferiores.
 l. Instale los pasadores de enganche en la caja de poleas.

3. Instale la almohadilla de desgaste inferior trasera (22), los suplementos (21) con el perno (23) en la parte trasera de la sección TEL N.° 3 de la pluma.

4. Instale las dos almohadillas de desgaste laterales (20) y los suplementos (19) en la parte trasera de la sección TEL N.° 3 de la pluma. Coloque los suplementos según las instrucciones de calibración dadas en esta sección, o según estaban en las almohadillas originalmente retiradas y marcadas.

5. Instale dos placas de montaje para las almohadillas de desgaste superiores (12), las almohadillas de desgaste (9), el perno (10) y la arandela (11) en la parte trasera de la sección TEL N.° 3 de la pluma.

6. Instale la placa de leva de ajuste (13), los pernos (10) y las arandelas (11).
 NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

7. Levante y apoye la sección TEL N.° 3 de la pluma en la parte delantera de la sección TEL N.° 2 de la pluma.

Secciones TEL N.° 3 y TEL N.° 2 de la pluma

Vea la Figura 4-7 para los pasos siguientes.

NOTA: Procure no dañar los cables.

1. Instale la sección TEL N.° 3 de la pluma en la sección TEL N.° 2 de la pluma aproximadamente 15 pies.

2. Gire la leva (23) hasta eliminar la separación entre la almohadilla de desgaste (20) y la sección de la pluma manteniendo las secciones de pluma centradas para la alineación correcta de la pluma.
 NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

3. Levante la sección TEL N.° 3 de la pluma contra la parte superior de la sección TEL N.° 2 de la pluma e instale las almohadillas de desgaste (17) con los pernos (29) en la parte delantera inferior de la sección TEL N.° 2 de la pluma.
 NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.
4. Baje la sección TEL N.° 3 de la pluma sobre las almohadillas de desgaste en la sección TEL N.° 2 de la pluma. Empuje la sección TEL N.° 3 de la pluma en la sección TEL N.° 2 de la pluma, dejando aproximadamente 4 pies de la sección TEL N.° 3 de la pluma fuera de la sección TEL N.° 2 de la pluma.

5. Instale las almohadillas de desgaste laterales inferiores (37) con los suplementos (36) en el interior del lado delantero de la sección TEL N.° 2 de la pluma, sujetándolos con pernos (35).

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

6. Instale las almohadillas de desgaste laterales superiores (37) con los suplementos (36) en el interior de la parte delantera de la sección TEL N.° 2 de la pluma, sujetándolos con pernos (35).

NOTA: Puede ser necesario apoyar los componentes con una barra o herramienta que se extienda en el interior de la sección de la pluma para ayudar a posicionar los componentes durante el armado.

7. Instale las almohadillas de desgaste superiores, los suplementos, la guía de cables (33), la almohadilla de desgaste (34) y la tornillería relacionada (30—32) en la parte delantera superior de la sección TEL N.° 2 de la pluma. Instale suplementos siguiendo las instrucciones de calibración dadas en “Calibración de la pluma” en la página 4-49.

8. Empuje la sección TEL N.° 3 de la pluma completamente en la sección TEL N.° 2 de la pluma. Haga una marca en la punta de la sección TEL N.° 3 de la pluma delante de la almohadilla de desgaste lateral en la sección TEL N.° 2 de la pluma, para la secuencia de retracción.

9. Tire de la sección TEL N.° 3 de la pluma para sacarla de la sección TEL N.° 2 de la pluma aproximadamente un pie.

Vea la Figura 4-8 para los pasos siguientes.

10. Arme e instale el conjunto de cilindro de extensión.
 a. Instale los cojinetes (5) en las poleas de cilindro de extensión 2/3/4 (6).
 b. Cubra los cojinetes con grasa universal e instale las poleas de extensión 2/3/4 en el cilindro de extensión.
 c. Instale el pasador de polea (26) a través de la caja de poleas del cilindro, asegurándolo con la placa retenedora (28) y dos pernos (27).
 d. Instale dos almohadillas de desgaste (24 y 31) a cada lado de la punta delantera del cilindro de extensión con los pernos (25).

11. Enhebre los cables de extensión 2/3/4 (14) en las poleas (32) en la parte delantera del cilindro telescópico, instalando los cables detrás del cilindro en el orden correcto.

NOTA: Marque los extremos de los cables para mantener la secuencia correcta durante el armado para evitar el cruce de los cables.

12. Instale las varillas superior e inferior (35) con pernos en la parte inferior de la caja de poleas del cilindro de extensión. Instale la placa retenedora de cable (29) y los pernos (30) en la parte inferior de la caja de poleas del cilindro de extensión.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

13. Instale el cilindro de extensión en la parte trasera de la sección TEL N.° 3 de la pluma, dejando aproximadamente 2 pies extendidos. Empuje la sección TEL N.° 3 de la pluma completamente en la sección TEL N.° 2 de la pluma y eleve el cilindro de extensión hasta la parte superior de la sección TEL N.° 2 de la pluma.

 b. Instale el conjunto del eje en el retenedor en la parte trasera de la sección TEL N.° 3 de la pluma.

15. Baje el cilindro de extensión y empuje en la sección TEL N.° 2 de la pluma manteniendo los cables tensos hasta aproximadamente un pie detrás de los anclajes del cilindro en la sección TEL N.° 2 de la pluma. Eleve la parte trasera del cilindro de extensión hasta la parte superior de la sección TEL N.° 2 de la pluma.

16. Instale la almohadilla de desgaste (16) con los pernos (17) en la parte trasera de la cuarta sección de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

17. Pase los dos cables de retracción 4/3/2 centrados de manera uniforme alrededor del anclaje de retracción (18). Pase los extremos roscados de los cables de retracción 4/3/2 por la abertura en la parte trasera de la sección TEL N.° 2 de la pluma y tire de los extremos roscados de los cables de retracción 4/3/2 hacia la punta de la sección TEL N.° 2 de la pluma. Instale el anclaje de retracción 4/3/2 (18) en las placas de anclaje en la parte trasera de la sección TEL N.° 3 de la pluma.

Vea la Figura 4-7 para los pasos siguientes.

18. Arme e instale el pasador de retracción 4/3/2-extensión 1/2/3 (8) en la placa de anclaje en la parte trasera inferior de la sección TEL N.° 2 de la pluma.
a. Instale un anillo elástico (12) y un espaciador (11) en las ranuras interiores del pasador.

b. Instale el buje (10) en la polea (9), pase una brocha con grasa para chasis e instale en ambos extremos del pasador.

c. Instale el espaciador restante (11) y el anillo elástico (12) en el pasador.

d. Haga un bucle con los cables de retracción 4/3/2 alrededor de las poleas (9) y el pasador (8).

e. Instale los tapones en los extremos del pasador (8).

f. Instale el pasador armado en el retenedor en la parte trasera de la sección TEL N.° 2 de la pluma.

g. Instale las graseras (7) hacia la parte trasera de la sección de la pluma.

h. Aplique grasa universal (MPG) a las graseras.

19. Instale las guías de cables de retracción (6) con los pernos (5) en la parte trasera de la sección TEL N.° 2 de la pluma.

NOTA: Tenga cuidado al mover el cilindro de extensión para evitar dañar las guías de cables (6).

20. Baje el cilindro de extensión sobre la almohadilla de desgaste (16 Figura 4-8).

Secciones TEL N.° 2 y TEL N.° 1 de la pluma

Vea la Figura 4-7 para los pasos siguientes.

1. Instale las dos placas retenedoras de almohadillas de desgaste superiores (22), las almohadillas de desgaste (20), los pernos (19) y las arandelas planas (21) en la parte trasera de la sección TEL N.° 2 de la pluma (1).

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

2. Instale la placa de leva de ajuste (23), los pernos (19) y las arandelas planas (21).

3. Gire la leva (23) hasta eliminar la separación entre las almohadillas de desgaste (20) y la sección de la pluma manteniendo las secciones centradas para la alineación correcta de la pluma.

4. Instale la almohadilla de desgaste inferior (17), los suplementos (18) con los pernos (16) en la parte trasera de la sección TEL N.° 2 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

5. Instale las dos almohadillas de desgaste laterales (2) y los suplementos (3) en los pasadores en la parte trasera de la sección TEL N.° 2 de la pluma. Instale suplementos siguiendo las instrucciones de calibración dadas en “Calibración de la pluma” en la página 4-49.

NOTA: Asegúrese de que las orejetas del cilindro de extensión de la sección TEL N.° 1 estén horizontales.

6. Estire el cable de sincronización de extensión 1/2/3, después vuelva a unir los extremos roscados para formar un bucle y determine el punto central del tramo de cable.

a. Deslice este bucle central de adelante hacia atrás por la ranura de anclaje del cable en la parte trasera superior de la sección TEL N.° 2 de la pluma.

b. Deslice la polea retenedora (4) en esta ranura desde la parte de atrás hacia adelante de manera que la parte elevada de la polea se deslice en la ranura de la placa de anclaje del cable.

c. Tire de este bucle de cable hacia adelante para trabajar el cable de sincronización de extensión 1/2/3 en la sección TEL N.° 2 de la pluma.

Vea la Figura 4-6 para los pasos siguientes.

d. Coloque el conjunto de anclaje de poleas (20) en la parte delantera superior de la sección TEL N.° 2 de la pluma con su barra superior hacia arriba y hacia adelante.

e. Pase los dos extremos roscados del cable de sincronización de extensión hacia la parte trasera de la pluma para formar dos bucles, izquierdo y derecho, en la parte delantera de la pluma. Deslice los bucles izquierdo y derecho en los lados izquierdo y derecho del conjunto de anclaje de poleas.

f. Instale los cojinetes (21) en las poleas.

g. Pase una brocha con grasa para chasis en el conjunto.

h. Instale los pasadores (23) en las poleas (22).

NOTA: Asegúrese de que los agujeros de alimentación de grasa queden orientados hacia la parte trasera de la pluma.

i. Deslice los pasadores (con las poleas) en las ranuras en la parte delantera del conjunto de anclaje de polea (20). Pliegue hacia atrás y coloque el conjunto de anclaje de poleas armadas en la parte superior de las secciones de la pluma durante el armado de la siguiente sección de la pluma.

j. Pase y ponga los extremos roscados del cable de sincronización de extensión (24) hacia la parte trasera de la pluma y forme un bucle sobre la parte trasera de la pluma.
7. Levante y apoye las secciones TEL N.° 2 y TEL N.° 3 e instálelas en la sección TEL N.° 1 de la pluma aproximadamente 15 pies.

NOTA: Mantenga los cables de retracción 3/2/1 tensos, sin entrecruzarlos y manteniéndolos alejados de los puntos de estricción creados por las eslingas y almohadillas inferiores.

8. Levante las secciones TEL N.° 2 y TEL N.° 3 de la pluma contra la parte superior de la sección TEL N.° 1 de la pluma e instale las almohadillas de desgaste (25) con los pernos (26) en la parte delantera inferior de la sección TEL N.° 1 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

NOTA: No retuerza los cables. Retorcer los cables causará daños o la falla del cable. Durante el armado inicial de los extremos roscados de cables, enrosque la primera tuerca más allá de la parte plana para poder efectuar el ajuste posteriormente.

10. Instale las almohadillas de desgaste inferiores (8) y los suplementos (9 y 10) con los pernos (28) en la parte delantera inferior de la sección TEL N.° 1 de la pluma.

11. Instale las almohadillas de desgaste superiores (8) y los suplementos (9 y 10) con los pernos (28) en la parte delantera superior de la sección TEL N.° 1 de la pluma.

NOTA: Puede ser necesario apoyar los componentes con una barra o herramienta que se extienda en el interior de la sección de la pluma para ayudar a posicionar los componentes durante el armado.

Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

12. Deslice el conjunto de anclaje de poleas del cable de extensión 1/2/3 previamente armado (20), que está en la punta superior de la sección TEL N.° 2 de la pluma, a su posición en la sección TEL N.° 1 de la pluma y asegure con los pernos (16).

13. Instale las graseras (19) en los pasadores (23).

14. Instale la almohadilla de desgaste (11) con los suplementos (12) en la parte delantera superior de la sección TEL N.° 1 de la pluma. Instale la almohadilla de desgaste (18), la guía de cables (13) con la tornillería relacionada (14, 15 y 17) en la parte delantera superior de la sección TEL N.° 1 de la pluma. Instale suplementos siguiendo las instrucciones de calibración dadas en “Calibración de la pluma” en la página 4-49.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

15. Empuje las secciones TEL N.° 2 y TEL N.° 3 de la pluma en la sección TEL N.° 1 hasta que toque fondo contra las orejetas del cilindro de la sección TEL N.° 1 de la pluma. Aplique Loctite e instale los pernos y las arandelas (2 y 3, Figura 4-2) para retener la sección TEL N.° 1 del cilindro en la parte trasera de la sección TEL N.° 1 de la pluma.

Vea la Figura 4-7 para los pasos siguientes.

16. Instale la almohadilla de desgaste del cable (25) con los pernos (24) en la parte superior del tubo del cilindro de extensión.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

17. Instale el cilindro de extensión en las ranuras en la parte trasera de la sección TEL N.° 1 de la pluma. Instale los retenedores (28), los pernos (26) y las arandelas de seguridad (27) con Loctite aplicado en los pernos del cilindro en la sección TEL N.° 1 en la sección Tel 1 de la pluma.

Vea la Figura 4-6 para los pasos siguientes.

18. Instale la almohadilla de desgaste (7) encima del conjunto de anclaje del cable de extensión 2/3/4 (4), después instale el conjunto de anclaje del cable de extensión 2/3/4 en las ranuras de la parte trasera de la sección TEL N.° 1 de la pluma, mientras guía los cables de extensión 2/3/4 (24) hasta el conjunto de anclaje (4). Instale las tuercas (2, 3 y 27) en los extremos roscados de los cables de extensión 2/3/4 (el espaciador se usa en el cable central solamente).

NOTA: No retuerza los cables. Retorcer los cables causará daños o la falla del cable. Durante el armado inicial de los extremos roscados de cables, enrosque la primera tuerca más allá de la arandela plana para poder efectuar el ajuste posteriormente.

19. Fije el conjunto de anclaje de cable (4) en su lugar con los tornillos de cabeza plana (6) pasados por las placas laterales superiores y traseras con el perno de cabeza hueca (5) en la sección TEL N.° 1 de la pluma. Compruebe que los cables de sincronización de extensión 1/2/3 (24) estén colocados sobre la parte superior del anclaje del cable de extensión 2/3/4.
Vea la Figura 4-7 para el paso siguiente.

20. Pase los tres cables de retracción 3/2/1 alrededor del retenedor de cables 3/2/1 (15) e instálelos en la escuadra de montaje (14) con el perno (13) sobre el anclaje de cables de retracción 3/2/1 con los cables de retracción 3/2/1 extendidos por detrás de la pluma.

Vea la Figura 4-5 para los pasos siguientes.

21. Ensamble el pasador (7) e instálelo en la parte trasera inferior de la sección TEL N.° 1 de la pluma.
 a. Instale un anillo elástico (11) y un espaciador (10) dentro de cada polea.
 b. Instale el cojinete (9) en la polea (8), pase una brocha con grasa universal (MPG) e instálelo en ambos extremos del pasador.
 c. Instale las arandelas restantes y los anillos elásticos en el pasador.
 d. Haga un bucle con los cables de retracción 3/2/1 alrededor de las poleas (8) y el conjunto de pasador (7).
 e. Instale los tapones en los extremos del pasador (7).

22. Instale el conjunto en la parte trasera de la sección TEL N.° 1 de la pluma.
 a. Instale el pasador armado en las placas de anclaje en la parte trasera de la sección TEL N.° 1 de la pluma, tirando de los extremos roscados de los cables de retracción 3/2/1 hacia la punta de la pluma.
 b. Instale los tornillos de fijación (6) detrás del pasador en la parte trasera de la sección TEL N.° 1 de la pluma (1).
 c. Instale las graseras hacia la parte trasera de la pluma.
 d. Aplique grasa universal (MPG) a las graseras.

23. Instale las guías de cables de retracción (5) y los pernos (4) en la parte trasera de la sección TEL N.° 1 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superfi- cies de contacto y de almohadillas de desgaste.

24. Pase los cables de retracción 3/2/1 entre la parte inferior de la sección TEL N.° 1 de la pluma y los suplementos de almohadilla inferior.

25. Instale las dos almohadillas de desgaste laterales (2) y los suplementos (3) en la parte trasera de la sección TEL N.° 1 de la pluma. Instale suplementos siguiendo las instrucciones de calibración dadas en “Calibración de la pluma” en la página 4-49.

NOTA: Aplique grasa universal (MPG) a todas las superfi- cies de contacto y de almohadillas de desgaste.

26. Instale dos placas retenedoras de almohadillas de desgaste superiores (6), las almohadillas de desgaste (7), los pernos (4) y las arandelas (5) en la parte trasera de la sección TEL N.° 1 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superfi- cies de contacto y de almohadillas de desgaste.

27. Instale la placa de leva de ajuste (3), los pernos (4) y las arandelas planas (5).

Secciones TEL N.° 1 y base de la pluma

Vea la Figura 4-5 para los pasos siguientes.

1. Instale la almohadilla de desgaste inferior (16), los suplementos (17) y los pernos (15) en la parte trasera de la sección TEL N.° 1 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superfi- cies de contacto y de almohadillas de desgaste.

2. Instale las dos almohadillas de desgaste laterales (2) y los suplementos (3) en la parte trasera de la sección TEL N.° 1 de la pluma. Instale suplementos siguiendo las instrucciones de calibración dadas en “Calibración de la pluma” en la página 4-49.

NOTA: Aplique grasa universal (MPG) a todas las superfi- cies de contacto y de almohadillas de desgaste.

3. Gire el eje del cilindro de la sección de base de modo que la válvula equilibradora se encuentre directamente debajo de la línea central del eje.

4. Levante y apoye las secciones TEL N.° 1, TEL N.° 2 y TEL N.° 3 e instálelas en la sección de base de la pluma aproximadamente 15 pies.

NOTA: Mantenga los cables de retracción 3/2/1 tensos, no permita que se entrecruce y manténgalos alejados de los puntos de estricción creados por las eslingas y almohadillas inferiores.

Vea la Figura 4-4 para los pasos siguientes.

5. Levante las secciones TEL N.° 1, TEL N.° 2 y TEL N.° 3 de la pluma contra la parte superior de la sección de base de la pluma e instale las almohadillas de desgaste (15) con los pernos (14) en la parte delantera inferior de la sección de base de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superfi- cies de contacto y de almohadillas de desgaste.

6. Baje las secciones TEL N.° 1, TEL N.° 2 y TEL N.° 3 de la pluma sobre las almohadillas de desgaste en la sección de base de la pluma. Empuje las secciones TEL N.° 1, TEL N.° 2 y TEL N.° 3 de la pluma en la sección de base de la pluma, dejando aproximadamente 4 pies de las secciones TEL N.° 1, TEL N.° 2 y TEL N.° 3 de la pluma sobresaliendo de la sección de base de la pluma.
7. Arme las placas de anclaje de cables de reacción 3/2/1 (24) con los pernos (23) en los cables de reacción 3/2/1. Instale las tuercas (20 y 21) justo después de las partes planas en los cables de reacción 1/2/3 (22) y arme en la punta inferior de la sección de base de la pluma. Tenga cuidado de no entrecruzar los cables.

NOTA: No retuerza los cables. Retorcer los cables causará daños o la falla del cable. Durante el armado inicial de los extremos roscados de cables, enrosque la primera tuerca más allá de las partes planas para poder efectuar el ajuste posteriormente.

8. Instale las almohadillas de desgaste laterales (8), las placas de respaldo de almohadilla (7) y las placas de respaldo (6).

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

9. Instale el perno de ajuste (4) y la contratuerca (5) en las placas de respaldo de la sección de base de la pluma. Instale la tornillería de retención de almohadilla de desgaste (1—3) en las placas de respaldo.

NOTA: Puede ser necesario apoyar los componentes con una barra o herramienta que se extienda en el interior de la sección de la pluma para ayudar a posicionar los componentes durante el armado.

Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

10. Instale la placa superior (9), los suplementos (10) y la tornillería (11—13) en la parte delantera de la sección de base de la pluma. Aplique pasta Loctite a los pernos. Instale suplementos siguiendo las instrucciones de calibración dadas en “Calibración de la pluma” en la página 4-49.

Vea la Figura 4-3 para los pasos siguientes.

11. Empuje las secciones TEL N.º 1, TEL N.º 2 y TEL N.º 3 hasta que todas las placas de leva (3) sean accesibles a través del orificio de acceso superior en las secciones base, TEL N.º 1 y TEL N.º 2 de la pluma, manteniendo los cables de reacción 3/2/1 tensos.

12. Gire las placas de leva (3) hasta que se elimine la separación entre las almohadillas de desgaste y la sección de la pluma. Asegúrese de que las secciones de la pluma permanezcan centradas para una correcta alineación de la pluma. Apriete los pernos (1).

13. Repita el paso 12 para todos los ajustes de las almohadillas de desgaste.

Vea la Figura 4-2 para los pasos siguientes.

14. Fije la varilla del cilindro de la sección de base al montaje del malacate de la sección de base con arandelas (3) y pernos (2). Aplique Loctite y apriete de acuerdo a la especificación. Vea “Sujetadores y valores de apriete” en la página 1-7.

NOTA: En este paso es importante tener las tuercas (20 y 21, Figura 4-4) sueltas en los cables de reacción 3/2/1 (22, Figura 4-4) en la punta inferior de la sección de base de la pluma.

15. Instale los cables de sincronización de extensión 1/2/3 (8) en los agujeros en la parte trasera de la sección de base de la pluma e instale las arandelas (7) y las tuercas (6, 13 y 14) (si las tiene) apenas más allá de las partes planas. Para las opciones de configuración de tuerca adecuadas. Vea “Retención de cable” en la página 4-18

NOTA: No retuerza los cables. Retorcer los cables causará daños o la falla del cable. Durante el armado inicial de los extremos roscados de cables, enrosque la primera tuerca más allá de la parte plana para poder efectuar el ajuste posteriormente.

17. Instale todas las tapas protectoras en los extremos roscados de los cables.

18. Extienda la pluma y alinee todas las secciones de la pluma según se necesite.

19. Instale la cubierta de inspección (11) con la tornillería (9 y 10) en la parte superior trasera de la sección de base de la pluma.

20. Extienda y emplace los estabilizadores y el estabilizador delantero sencillo (SFO).

22. Conecte las líneas hidráulicas al cilindro telescópico como se apuntó durante la extracción.

23. Pruebe el funcionamiento correcto de la extensión y retracción de la pluma.
Tensión de cable de cuatro secciones

Después del armado de la pluma o si los cables de proporción interiores parecen estar sueltos, podría ser necesario tensar los cables.

Procedimiento de preparación del tensado

NOTA: El tensado del cable debe efectuarse con la pluma en posición horizontal.

Al apretar o aflojar las primeras contratuercas (de ajuste) en los cables, sujete el cable utilizando las partes planas para la llave de tuercas en la parte delantera de los extremos del cable para evitar que el cable se retuerza. El retorcimiento excesivo de los cables puede causar la falla prematura.

Asegúrese de que la pluma esté completamente armada y totalmente retraída.

1. **Secuencia de tensado de cable**
 Los cables se deben tensar en el siguiente orden:
 1. Cables de retracción 3/2/1
 2. Cables extensión (sincronización) 1/2/3
 3. Cables de extensión 2/3/4
 4. Cables de retracción 4/3/2

La pluma debe estar en posición horizontal cuando se ajuste la tensión del cable. Retraiga completamente la pluma para asegurarse de que las secciones tocan fondo en los topes de sección. Asegúrese de que todas las secciones estén totalmente en el fondo y que no retrocedan. Vea “Procedimiento de preparación del tensado” en la página 4-17.

Para equilibrar los cables 3/2/1 y 1/2/3

1. Mida las separaciones de extensión entre las secciones primera y segunda y entre las secciones segunda y tercera.

Si la separación de extensión entre las secciones primera y segunda es menor que la separación de extensión entre las secciones segunda y tercera, complete los pasos siguientes:

2. Apriete el cable de retracción 3/2/1, ubicado en la parte delantera inferior de la sección trasera, al valor de diferencia en las mediciones de separación de extensión.

3. Extienda y retraiga la pluma unas pocas veces y luego repita la medición de las separaciones de la extensión.

La segunda sección debería haberse movido hacia afuera.

4. Continúe apretando hasta que la separación de extensión entre las secciones primera y segunda y la separación de extensión entre las secciones segunda y tercera sean igual.

Si la tercera sección comienza a salirse con la segunda sección cuando aprieta el cable de retracción 3/2/1, puede ser necesario aflojar el cable de sincronización 1/2/3 ubicado en la parte posterior superior de la sección trasera.
MANTENIMIENTO DE LA PLUMA

Retracción

1. Mida las separaciones de retracción entre las secciones primera y segunda y entre las secciones segunda y tercera.

Si la separación de retracción entre las secciones primera y segunda es mayor que la separación de retracción entre las secciones segunda y tercera, complete los pasos siguientes:

2. Apriete el cable de sincronización 1/2/3, ubicado en la parte trasera de la sección trasera, al valor de diferencia en las mediciones de separación de retracción.

3. Extienda y retraiga la pluma unas pocas veces y luego repita la medición de las separaciones de la retracción.

4. Continúe apretando hasta que la separación de retracción entre las secciones primera y segunda y la separación de extensión entre las secciones segunda y tercera sean iguales.

5. Apriete los cables de extensión a un par de 61.01 Nm (45 lb pie). Apriete los cables de retracción 3/2/1 a 8.13 Nm (6 lb pie). Apriete el cable de extensión 1/2/3 a 29.83 Nm (22 lb pie).

6. Extienda y retraiga la pluma por un ciclo completo. Verifique que todos los cables están apretados correctamente y que todas las secciones se retraen completamente.

En este punto, todas las secciones extensibles deberían extenderse y retraerse igualmente y tocar los topes simultáneamente.

Retención de cable

Para retener los cables, la configuración de las tuercas será: primera tuerca (ajuste) y segunda tuerca (apretada) vea la Figura 4-10.

NOTA: Use la Opción 2 solo cuando las restricciones de espacio impidan el uso de la Opción 1 (vea la Figura 4-10).

Al apretar o aflojar la primera tuerca (2) en los cables, sujete los cables utilizando las partes planas de la llave de tuercas en la parte delantera de los extremos del cable para evitar que el cable se retuerza.

Después de completar el procedimiento de ajuste del cable para todo el conjunto de la pluma, instale y apriete la segunda tuerca (6) en todos los cables de retracción y extensión.

La segunda tuerca debe apretarse con la mano hasta que entre en contacto con la parte trasera de la primera tuerca.

Mantenga la primera tuerca (2) fija y use una llave torsiométrica para apretar la segunda tuerca (6) contra la primera tuerca. Vea “Valores de apriete para la segunda contra-tuerca” en la página 4-19.

Instale la tercera tuerca (3) en cada uno de los cables de extensión. Los cables de retracción no requieren la tercera tuerca.

Apriete a mano la tercera tuerca hasta que el orificio roscado para el tornillo de fijación quede tangente a la cara del extremo de la parte plana de la llave de tuercas.

Instale el tornillo de fijación en la tercera tuerca (3) y apriete.
Use la Opción 2 solo cuando las restricciones de espacio impidan el uso de la Opción 1 (vea la Figura 4-10).

Valores de apriete para la segunda contratuerca

| Tabla 4-1 |

Sustitución de almohadillas superiores e inferiores de la pluma de cuatro secciones (armada)

Inspeccione las almohadillas de desgaste superiores e inferiores periódicamente en busca de señales de abrasión o desgaste excesivo.

El desgaste se considera excesivo si es mayor que 4.76 mm (0.188 pulg) del grosor original.

Las almohadillas inferiores de las secciones base, TEL N.° 1 y TEL N.° 2 de la pluma en la parte delantera tienen un grosor de 31.8 mm (1.25 pulg). Las almohadillas superiores de las secciones TEL N.° 1 y TEL N.° 2 tienen 28.6 mm (1.125 pulg) de grosor. Las almohadillas superiores de la sección TEL N.° 3 tienen 11.6 mm (0.45 pulg) de grosor. El desgaste disparejo, como el borde exterior de la almohadilla desgastada a más de 1.59 mm (0.0625 pulg) con respecto al borde interior de la almohadilla. Si se descubre cualquiera de estas condiciones, las almohadillas superiores e inferiores pueden sustituirse sin necesidad de desarmar la pluma.

Si la extensión de la pluma funciona de modo errático, o cuando se sustituyan las almohadillas superiores e inferiores, se recomienda sustituir los tapones de lubricación de las almohadillas de desgaste por tapones nuevos. Estos tapones de lubricación nuevos inicialmente sobresalen 2.38 mm (0.0938 pulg) por encima de la superficie de la almohadilla y aplican una capa duradera de lubricante sobre la superficie deslizante de la pluma.

| Serie de pulgadas con roscas gruesas (UNC) |

<table>
<thead>
<tr>
<th>Tamaño de roscas de extremo de cable</th>
<th>GRADO de resistencia mínimo de tuerca</th>
<th>Tipo de tuerca</th>
<th>Par de apriete</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2-13 SAE 2</td>
<td>Contratuerca hexagonal (MEDIA)</td>
<td>16 Nm (12 lb pie)</td>
<td></td>
</tr>
<tr>
<td>5/8-11 SAE 2</td>
<td>Contratuerca hexagonal (MEDIA)</td>
<td>42 Nm (31 lb pie)</td>
<td></td>
</tr>
<tr>
<td>3/4-10 SAE 2</td>
<td>Contratuerca hexagonal (MEDIA)</td>
<td>64 Nm (47 lb pie)</td>
<td></td>
</tr>
<tr>
<td>7/8-9 SAE 2</td>
<td>Contratuerca hexagonal (MEDIA)</td>
<td>85 Nm (63 lb pie)</td>
<td></td>
</tr>
<tr>
<td>1-8 SAE 2</td>
<td>Contratuerca hexagonal (MEDIA)</td>
<td>270 Nm (199 lb pie)</td>
<td></td>
</tr>
<tr>
<td>11/4-7 SAE 2</td>
<td>Contratuerca hexagonal (MEDIA)</td>
<td>275 Nm (203 lb pie)</td>
<td></td>
</tr>
<tr>
<td>11/2-6 SAE 5</td>
<td>Contratuerca hexagonal (COMPLETA)</td>
<td>339 Nm (250 lb pie)</td>
<td></td>
</tr>
<tr>
<td>1 3/4-5 ASTM B</td>
<td>Contratuerca hexagonal (COMPLETA)</td>
<td>339 Nm (250 lb pie)</td>
<td></td>
</tr>
</tbody>
</table>

| Serie métrica con roscas gruesas |

<table>
<thead>
<tr>
<th>Tamaño de roscas de extremo de cable</th>
<th>Categoría de propiedades mínima de tuerca</th>
<th>Tipo de tuerca</th>
<th>PAR DE APRIETE Nm (lb pie)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M16 x 2</td>
<td>5</td>
<td>Contratuerca hexagonal (DELGADA)</td>
<td>26 Nm (19 lb pie)</td>
</tr>
<tr>
<td>M20 x 2.5</td>
<td>5</td>
<td>Contratuerca hexagonal (DELGADA)</td>
<td>66 Nm (49 lb pie)</td>
</tr>
</tbody>
</table>
Sustitución de la almohadilla de desgaste superior

Vea la Figura 4-11 para los pasos siguientes.

NOTA: Todas las almohadillas de desgaste superiores deben marcarse, inspeccionarse y rearmarse exactamente al estado en que se quitaron, a menos que se vaya a hacer un reacondicionamiento completo.

1. Retire la cubierta de inspección de la parte trasera de la sección de base de la pluma.

2. Retire la pluma completamente, luego extienda la pluma aproximadamente 343 mm (13.50 pulg) o 114 mm (4.50 pulg) por sección para que las almohadillas de desgaste superiores en la sección TEL N° 2 de la pluma sean visibles a través del orificio de inspección (1) de las secciones base y TEL N° 1 de la pluma.

3. Retire el perno (2), la arandela (3) y la placa de la leva (4) de la sección TEL N° 2 de la pluma.

4. Retire los pernos (6), las arandelas (5), las placas retenedoras de almohadilla de desgaste (7) y los suplementos (9) de la sección TEL N° 2 de la pluma. Retire las almohadillas de desgaste superiores (8) de la sección TEL N° 2 de la pluma. Marque las placas retenedoras de almohadilla de desgaste de manera que puedan reinstalarse exactamente como estaban cuando se quisieron.

5. Marque la ubicación de las tuercas (11, 13 y 14) (si las tiene). Afloje y retire los cables de extensión 1/2/3 (10) de los agujeros de montaje en la placa de respaldo (12) de la sección de base de la pluma. Ate los cables de extensión 1/2/3 con aproximadamente 610 mm (24 pulg) de alambre y deje que descansen holgadamente en la sección de base de la pluma, quitando los cables de la muesca en las almohadillas de la sección TEL N° 2 de la pluma.

6. Reinstale las almohadillas de desgaste superiores de la sección TEL N° 2 de la pluma e instale las placas retenedoras de las almohadillas de desgaste exactamente como estaban cuando se quisieron en la placa superior de la sección TEL N° 2 de la pluma. Aplique Loctite a todos los tornillos de montaje de cabeza plana.

7. Si es necesario, reinstale los cables de extensión 1/2/3 en la parte trasera de la sección de base de la pluma y reinstale las tuercas que aseguran estos cables en su posición original previamente marcada en los extremos roscados de los cables.

8. Extienda la pluma aproximadamente 800 mm (31.5 pulg) o 265 mm (10.44 pulg) por sección, para que las almohadillas de desgaste superiores en la sección TEL N° 1 de la pluma sean visibles a través del agujero de inspección en la placa superior de la sección de base de la pluma.

9. Retire los pernos de las placas retenedoras de las almohadillas de desgaste de la sección TEL N° 1 de la pluma y deslice las placas retenedoras hacia el centro de la pluma. Marque estas placas retenedoras de manera que puedan instalarse exactamente como estaban cuando se quisieron. Retire las almohadillas de desgaste superior de la sección TEL N° 1 de la pluma.
10. Reinstale las almohadillas de desgaste superiores de la sección TEL N.° 1 de la pluma e instale las placas retenedoras de las almohadillas de desgaste en la placa superior de la sección TEL N.° 1 de la pluma exactamente como se quitaron. Aplique Loctite a todos los tornillos de montaje de cabeza plana.

11. Extienda la pluma aproximadamente 12.4 m (40.7 pies) o 4 m (13.5 pies) por sección, para que la parte trasera de la sección TEL N.° 3 de la pluma pase el agujero en la placa lateral de la sección TEL N.° 2 de la pluma. Levante la parte delantera de la sección TEL N.° 3 de la pluma para aliviar la presión en las almohadillas de desgaste en la parte superior trasera de la sección TEL N.° 3 de la pluma.

12. Retire los pernos de la parte inferior de la placa superior en la parte trasera de la sección TEL N.° 3 de la pluma que conecta las placas retenedoras de las almohadillas de desgaste a la sección TEL N.° 3 de la pluma.

13. Deslice las placas retenedoras y las almohadillas de desgaste superiores hacia la parte trasera de la pluma y quitelas. Marque las placas retenedoras de almohadilla de desgaste de manera que puedan instalarse exactamente como estaban cuando se quitaron.

14. Reinstale las almohadillas de desgaste superiores de la sección TEL N.° 3 de la pluma e instale las placas retenedoras de las almohadillas de desgaste exactamente como estaban cuando se quitaron en la placa superior de la sección TEL N.° 3 de la pluma. Aplique Loctite a todos los tornillos de montaje de cabeza plana.
Sustitución de la almohadilla de desgaste inferior

Vea la Figura 4-12 para los pasos siguientes.

1. Baje la pluma hasta que el cilindro de elevación toque fondo y extienda la pluma aproximadamente 18 m (6 pies) o 0.6 m (2 pies) por sección.

2. Levante la parte delantera de la sección TEL N.° 3 de la pluma hasta que se quite el peso de las almohadillas inferiores en las secciones TEL N.° 2, TEL N.° 1 y base de la pluma.

3. Retire los pernos (1, Vista A y B) (tres en cada almohadilla) que retienen las almohadillas de desgaste inferiores de la sección TEL N.° 1 y base de la pluma (2, Vista A y B) y retire las almohadillas de desgaste inferiores. Instale nuevas almohadillas de desgaste inferior. Aplique Loctite e instale los pernos firmemente.

4. Retire los pernos (1, Vista C) (tres en cada almohadilla) que retienen las almohadillas de desgaste inferiores de la sección TEL N.° 2 de la pluma (2) y retire las almohadillas de desgaste inferiores. Instale nuevas almohadillas de desgaste inferior. Aplique Loctite e instale los pernos firmemente.
PLUMA DE CINCO SECCIONES

Vea la Figura 4-13 para la información siguiente.

Un cilindro de dos etapas, alimentado por varilla y de efecto doble se conecta a las secciones base, TEL N.° 1 y TEL N.° 2 de la pluma y las sostiene.

Los cables de extensión 3/4/5 se conectan a la parte trasera de la sección TEL N.° 2 de la pluma, se enhebran alrededor de las poleas de la parte delantera de la sección TEL N.° 3 de la pluma, y se conectan a la parte trasera y sujetan la sección TEL 4 de la pluma.

Los cables de retracción 5/4/3 se conectan a la parte trasera de la sección TEL 4 de la pluma, se enhebran alrededor de las poleas de la parte delantera de la sección TEL N.° 3 de la pluma, y se conectan a la parte delantera de la sección TEL N.° 2 de la pluma.

Los cables de extensión 2/3/4 se conectan a la parte trasera de la sección TEL N.° 1 de la pluma, se enhebran alrededor de las poleas de la parte delantera del cilindro de la sección TEL N.° 2 de la pluma, y se conectan a la parte trasera y sujetan la sección TEL N.° 3 de la pluma. Los cables de retracción 4/3/2 se conectan a la parte trasera de la sección TEL N.° 3 de la pluma, se enhebran alrededor de las poleas de la parte trasera de la sección TEL N.° 2 de la pluma, y se conectan a la parte delantera de la sección TEL N.° 1 de la pluma.

Los cables de extensión 1/2/3 se conectan a la parte trasera de la sección de base de la pluma, se enhebran alrededor de las poleas de la parte delantera de la sección TEL N.° 1 de la pluma, y se conectan a la parte trasera de la sección TEL N.° 2 de la pluma.

Los cables de retracción 3/2/1 se conectan a la parte trasera de la sección TEL N.° 2 de la pluma, se enhebran alrededor de las poleas de la parte delantera de la sección TEL N.° 1 de la pluma, y se conectan a la parte delantera de la sección base de la pluma.

Los cables de retracción 3/2/1 se oponen directamente a los cables de extensión 1/2/3 para asegurar que las secciones TEL N.° 1 y TEL N.° 2 de la pluma se extiendan y retrajen de modo uniforme en todo momento.

Los cables de retracción 4/3/2 se oponen directamente a los cables de extensión 2/3/4 para asegurar que las secciones TEL N.° 2 y TEL N.° 3 de la pluma se extiendan y retrajen de modo uniforme en todo momento.

Los cables de retracción 5/4/3 se oponen directamente a los cables de extensión 3/4/5 para asegurar que las secciones TEL N.° 3 y TEL 4 de la pluma se extiendan y retrajen de modo uniforme en todo momento.

Se considera que un conjunto de pluma está debidamente sincronizado cuando las secciones telescopícas se extienden igualmente con respecto a la otra y topan simultáneamente a retracción plena y no retroceden hasta después que la presión de retracción vuelva a punto muerto.

La construcción del cilindro de extensión hidráulico dicta cuál sección extensible es el mando por el cual se ajustan las otras secciones de extensión.

Un cilindro de etapa sencilla controlará la primera sección extensible.

Un cilindro de etapa doble controlará la segunda sección extensible.

NOTA: La secuencia de sincronización de los cables depende del número de secciones y de la construcción del cilindro de extensión.

El propósito del diseño del tensado de cables es equilibrar la precarga de los cables de extensión y retracción para cada sección extensible. Además, la secuencia de las secciones durante la retracción requiere que los cables de retracción de cada sección estén alineados entre sí.
Retiro de la pluma
Consulte la Figura 4-13, Figura 4-21, Figura 4-18, Figura 4-20 y la Figura 4-21 para el retiro, desarmado, armado y tensión del cable de la pluma.

Para el peso de la pluma, vea “Especificaciones” en la Sección 9 de este manual.

1. Extienda y ajuste los estabilizadores de la máquina y el estabilizador delantero sencillo opcional (SFO) (si lo tiene). La pluma debe estar completamente retraída y almacenada en el apoyo de la pluma sobre la parte delantera del camión.

2. Si lo tiene, retire el plumín giratorio según los procedimientos descritos en la Sección 6 del manual del operador.

3. Retire el aparejo de gancho o el peso de la línea de tensión y enrolle el cable en el tambor del malacate. Apague el motor.

4. Conecte un dispositivo de levante al contrapeso para distribuir el peso de modo uniforme. Eleve el contrapeso hasta que se quite el peso del pasador de pivote de la pluma. Retire la tornillería de retención de contrapeso del pasador de pivote de la pluma y baje el contrapeso hasta que descansen sobre la caja de estabilizadores traseros.

5. Fije un dispositivo de levante al extremo de la varilla del cilindro de elevación, retire el retenedor y el pasador del cilindro de elevación de la parte inferior de la sección de base de la pluma. Baje el extremo de la varilla del cilindro de elevación a la plataforma.

6. Marque y desconecte las líneas del cilindro de extensión, las líneas hidráulicas del malacate y los cables eléctricos. Tape todas las aberturas. Desenchufe el cable del dispositivo de prevención del contacto entre bloques/RCL del receptáculo de la torreta.

8. Fije un dispositivo de levante para obtener una distribución uniforme del peso y eleve la pluma hasta quitarle el peso del pasador de pivote de la pluma. Retire el retenedor y el pasador de pivote de la pluma. Levante la pluma para soltarla de la torreta.
Desarmado de la pluma de cinco secciones

Vea la Figura 4-14 para el procedimiento siguiente.

Para referencia, la parte delantera (Vista A) es el extremo de la caja de poleas, la parte trasera (base) (Vista B) es el extremo donde se monta el malacate y los lados izquierdo y derecho se identifican mirando desde la parte trasera a la delantera.

NOTA: Todas las almohadillas de desgaste deben marcarse, inspeccionarse y rearmarse exactamente al estado en que se quitaron, a menos que se vaya a hacer un reacondicionamiento completo.

Los pasos 1 al 3 corresponden a una pluma que va a desarmarse dejando la sección de base y el plumín (si lo tiene) instalados en la grúa. Todos los demás pasos corresponden al retiro de la pluma completa de la grúa (Vea “Retiro de la pluma” en la página 4-2).

1. Extienda y ajuste los estabilizadores de la máquina y el estabilizador delantero sencillo opcional (SFO) (si lo tiene).
2. Retraiga la pluma completamente y colóquela en posición horizontal.
3. Marque y desconecte las líneas hidráulicas del cilindro telescópico. Tape todas las líneas y aberturas.
4. Retire los pernos (2) y las arandelas (3) que sujetan la varilla del cilindro de extensión de la sección de base de la pluma a la parte trasera (4) de la sección de base de la pluma (1). Repita en el otro lado.
5. Marque la posición de las tuercas (6, 13 y 14) (si las tiene) y la arandela (7) que fijan los cables de extensión 1/2/3 (8) a la parte trasera (4) de la sección de base de la pluma (1). Quite las tuercas y arandelas de los cables de extensión 1/2/3 en la parte trasera de la sección de base de la pluma. Marque y rotule los cables, y deje los extremos de los cables colgando dentro de la pluma.
6. Retire los pernos (10), las arandelas planas (9) y quite la cubierta de inspección (11) de la parte superior trasera de la sección de base de la pluma (1).
7. Conecte una eslinga o cadena a la parte delantera de la sección TEL N.° 1 de la pluma (12) y extraiga la sección TEL N.° 1 (con las secciones TEL N.° 2, TEL N.° 3 y TEL 4) aproximadamente 304 mm (12 pulg). Retire y...
marque las cuatro almohadillas de desgaste laterales y una almohadilla de desgaste superior con los suplemen-
tos de la parte delantera de la sección de base de la pluma.

NOTA: Todas las almohadillas de desgaste deben mar-
carse, inspeccionarse y rearmarse exactamente al estado en que se quitaron.

8. Retire el perno (1), la arandela (2) y la placa de la leva (3) de la sección TEL N.º 1 de la pluma.

9. Retire los pernos (4) y las arandelas (5), y quite la placa retenedora de almohadilla de desgaste (6).

10. Retire la almohadilla de desgaste superior (7) de la parte superior de la sección de la pluma. Repita en el otro lado y en las secciones de pluma restantes que se retiren.
SECCIÓN DE BASE DE LA PLUMA (Continuación)

<table>
<thead>
<tr>
<th>Art.</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tuerca</td>
</tr>
<tr>
<td>2</td>
<td>Arandela de seguridad</td>
</tr>
<tr>
<td>3</td>
<td>Perno</td>
</tr>
<tr>
<td>4</td>
<td>Perno</td>
</tr>
<tr>
<td>5</td>
<td>Contratuerca</td>
</tr>
<tr>
<td>6</td>
<td>Placa de respaldo</td>
</tr>
<tr>
<td>7</td>
<td>Placa de respaldo de almohadilla de desgaste</td>
</tr>
<tr>
<td>8</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>9</td>
<td>Placa superior</td>
</tr>
<tr>
<td>10</td>
<td>Suplemento</td>
</tr>
<tr>
<td>11</td>
<td>Perno</td>
</tr>
<tr>
<td>12</td>
<td>Arandela de seguridad</td>
</tr>
<tr>
<td>13</td>
<td>Arandela plana</td>
</tr>
<tr>
<td>14</td>
<td>Pernos de cabeza hueca</td>
</tr>
<tr>
<td>15</td>
<td>Almohadilla de desgaste inferior</td>
</tr>
<tr>
<td>16</td>
<td>Perno</td>
</tr>
<tr>
<td>17</td>
<td>Suplemento</td>
</tr>
<tr>
<td>18</td>
<td>Suplemento</td>
</tr>
<tr>
<td>19</td>
<td>Almohadilla de desgaste lateral superior</td>
</tr>
<tr>
<td>20</td>
<td>Contratuerca</td>
</tr>
<tr>
<td>21</td>
<td>Tuerca</td>
</tr>
<tr>
<td>22</td>
<td>Cable de retracción 3/2/1</td>
</tr>
<tr>
<td>23</td>
<td>Perno</td>
</tr>
<tr>
<td>24</td>
<td>Placas de anclaje de cables de retracción</td>
</tr>
<tr>
<td>25</td>
<td>Protector de cable</td>
</tr>
</tbody>
</table>

FIGURA 4-16
Vea la Figura 4-16 para los pasos siguientes.

11. Retire y rotule la tuerca (1), la arandela de seguridad (2) y el perno (3) en la parte delantera de la sección de base de la pluma (vea la Figura 4-16). Afloje la contratuerca de ajuste de la almohadilla de desgaste (5) y el perno (4). Rotule y quite la almohadilla de desgaste (8), las placas de respaldo (6) y las placas de respaldo de almohadilla de desgaste (7).

12. Saque el perno (11), la arandela de seguridad (12) y la arandela plana (13). Rotule y retire la placa superior (9) y los suplementos (10) de la parte delantera de la sección de base de la pluma.

13. Retire los pernos (16) del costado de la sección de base de la pluma. Rotule y retire las dos almohadillas de desgaste superiores (19) y los suplementos (17 y 18) de la parte delantera de la sección de base de la pluma.

14. Retire el protector de cable (25) y afloje la contratuerca de ajuste del cable (20) y la tuerca (21) en los cables de retracción 3/2/1 inferiores delanteros (22). Saque los cuatro pernos (23) que fijan las placas de anclaje de los cables de retracción 3/2/1 (24) a la punta inferior de la sección de base de la pluma.

15. Tire de los anclajes de cables de retracción y mantenga los cables de retracción tensos mientras tira de la sección TEL N.° 1 (con las secciones TEL N.° 2 y TEL N.° 3) de la pluma para sacarla de la sección de base de la pluma. Tire parcialmente de la sección TEL N.° 1 de la pluma del conjunto de pluma hasta que la parte delantera de la pluma pueda elevarse lo suficiente como para quitar y rotular las almohadillas de desgaste inferiores (15) y los tornillos de cabeza hueca (14) de la parte inferior delantera de la sección de base de la pluma. Apoye el extremo trasero de la sección TEL N.° 1 de la pluma a medida que sale de la sección de base de la pluma.

16. Coloque la sección TEL N.° 1 (con las secciones TEL N.° 2, TEL N.° 3 y TEL 4) de la pluma en una superficie horizontal adecuada.

NOTA: Procure no comprimir ni aplastar los cables de retracción mientras eleva o sostiene la sección TEL N.° 1 de la pluma.
SECCIÓN TEL N.° 1 DE LA PLUMA

<table>
<thead>
<tr>
<th>Art.</th>
<th>Descripción</th>
<th>Art.</th>
<th>Descripción</th>
<th>Art.</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sección TEL N.° 1 de la pluma</td>
<td>18</td>
<td>Anclaje de cable</td>
<td>34</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>2</td>
<td>Almohadilla de desgaste trasera</td>
<td>19</td>
<td>Almohadilla de desgaste</td>
<td>35</td>
<td>Perno</td>
</tr>
<tr>
<td>3</td>
<td>Suplemento</td>
<td>20</td>
<td>Tornillo de cabeza plana</td>
<td>36</td>
<td>Perno</td>
</tr>
<tr>
<td>4</td>
<td>Perno</td>
<td>21</td>
<td>Perno</td>
<td>37</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>5</td>
<td>Rodillo guía</td>
<td>22</td>
<td>Arandela plana</td>
<td>38</td>
<td>Protector de cable</td>
</tr>
<tr>
<td>6</td>
<td>Tornillo de fijación</td>
<td>23</td>
<td>Cable de extensión</td>
<td>39</td>
<td>Tuerca</td>
</tr>
<tr>
<td>7</td>
<td>Pasador de polea de retracción</td>
<td>24</td>
<td>Perno de cabeza hueca</td>
<td>40</td>
<td>Perno</td>
</tr>
<tr>
<td>8</td>
<td>Polea de retracción</td>
<td>25</td>
<td>Almohadilla de desgaste</td>
<td>41</td>
<td>Conjunto de placa</td>
</tr>
<tr>
<td>9</td>
<td>Cojinete</td>
<td>26</td>
<td>Suplemento</td>
<td>42</td>
<td>Conjunto de cables</td>
</tr>
<tr>
<td>10</td>
<td>Espaciador</td>
<td>27</td>
<td>Suplemento</td>
<td>43</td>
<td>Conjunto de cables</td>
</tr>
<tr>
<td>11</td>
<td>Anillo elástico</td>
<td>28</td>
<td>Almohadilla de acero</td>
<td>44</td>
<td>Polea</td>
</tr>
<tr>
<td>12</td>
<td>Perno</td>
<td>29</td>
<td>Suplemento</td>
<td>45</td>
<td>Cojinete</td>
</tr>
<tr>
<td>13</td>
<td>Almohadilla de desgaste inferior</td>
<td>30</td>
<td>Arandela plana</td>
<td>46</td>
<td>Pasador</td>
</tr>
<tr>
<td>14</td>
<td>Suplemento</td>
<td>31</td>
<td>Arandela de seguridad</td>
<td>47</td>
<td>Grasera</td>
</tr>
<tr>
<td>15</td>
<td>Tuerca (ajuste)</td>
<td>32</td>
<td>Perno</td>
<td>48</td>
<td>Conjunto de anclaje de polea</td>
</tr>
<tr>
<td>16</td>
<td>Tuerca (apretada)</td>
<td>33</td>
<td>Guía de cables</td>
<td>49</td>
<td>Perno</td>
</tr>
<tr>
<td>17</td>
<td>Tuerca (bloque positivo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIGURA 4-17
Vea la Figura 4-17 para los pasos siguientes.

17. Retire el perno (4) y el rodillo guía (5) de cada lado de la parte trasera inferior de la sección TEL N.° 1 de la pluma (1).

18. Retire los dos tornillos de fijación (6) que retienen el pasador de la polea de retracción 3/2/1 (7). Retire el conjunto de pasador de polea de retracción. Retire las poleas de retracción (8), los cojinetes (9), los espaciadores (10) y los anillos elásticos (11) como un conjunto de su ranura en la parte trasera de la sección TEL N.° 1 de la pluma. Elimine las rebabas que estén presentes en los extremos planos del pasador para evitar daños producidos al cojinete de la polea al quitar las poleas del pasador.

19. Retire los dos tornillos de cabeza hueca (24) y los dos tornillos de cabeza plana (20) que fijan la almohadilla de desgaste (19) al anclaje de los cables (18) conectado a la parte superior trasera de la sección TEL N.° 1 de la pluma (1).

20. Marque la posición de las tuercas (15—17) (si las tiene) que fijan los cables de extensión 2/3/4 (23) a la parte trasera de la sección TEL N.° 1 de la pluma. Retire las tuercas y el anclaje de cables (18) de la parte trasera/superior de la sección TEL N.° 1 de la pluma.

21. Saque el perno (21) con sus arandelas planas (22) de las escuadras de anclaje del cilindro de extensión, como una parte del centro de la parte trasera de la sección TEL N.° 1 de la pluma.

22. Fije una eslinga o cadena a la punta de la sección TEL N.° 2 de la pluma y tire de la sección TEL N.° 2 (con las secciones TEL N.° 3 y TEL 4) aproximadamente un pie. Retire y rotule las almohadillas de desgaste laterales superiores e inferiores (25) con los suplementos (26 y 27) de la parte delantera de la sección TEL N.° 1 de la pluma. Retire y rotule las dos almohadillas de acero interiores superiores (28) y el suplemento (29) de la punta de la sección TEL N.° 1 de la pluma.

23. Retire y rotule la guía de cables (33) y la tornillería (30—32 y 34) ubicada en la parte superior de la parte delantera de la sección TEL N.° 1 de la pluma.

24. Deslice el conjunto de anclaje de polea de cables de extensión 1/2/3 (44—48) para sacarlo de la parte superior delantera de la sección TEL N.° 1 de la pluma y permita que el conjunto de caja de poleas y los cables (43) reposen encima de la sección TEL N.° 2 de la pluma. Empuje las dos poleas en la punta delantera de la sección TEL N.° 1 de la pluma y guíelas del conjunto de anclaje de polea de los cables de extensión 1/2/3 (48) y de las poleas (44) previamente retiradas y almacenadas en la punta delantera de la sección TEL N.° 2 de la pluma. Los bucles de los cables ahora se pueden sacar de la caja de poleas y el cable de extensión 1/2/3 queda libre. Elimine las rebabas que estén presentes en los extremos planos de los pasadores para evitar daño al cojinete de la polea y de ser necesario quite los pasadores de las poleas superiores.

25. Retire los protectores de cables (38). Afloje las tuercas de ajuste (39) del cable de retracción (42). Saque los pernos (40) que fijan el conjunto de placas de anclaje de los cables de retracción 4/3/2 (41) a la punta inferior de la sección TEL N.° 1 de la pluma.

26. Levante la parte delantera de la pluma y retire las almohadillas de desgaste (37) de entre la parte frontal inferior de la sección TEL N.° 1 de la pluma. Tire de los anclajes de cables de retracción y mantenga los cables de retracción tensos mientras tira de las secciones TEL N.° 2, TEL N.° 3 y TEL 4 para sacarlas de la sección TEL N.° 1 de la pluma.

27. Coloque las secciones TEL N.° 2, TEL N.° 3 y TEL 4 de la pluma en una superficie horizontal adecuada.
SECCIÓN TEL. N.° 2 DE LA PLUMA

<table>
<thead>
<tr>
<th>Art.</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Parte trasera de sección de la pluma</td>
</tr>
<tr>
<td>2</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>3</td>
<td>Suplemento</td>
</tr>
<tr>
<td>4</td>
<td>Polea</td>
</tr>
<tr>
<td>5</td>
<td>Placa de leva</td>
</tr>
<tr>
<td>6</td>
<td>Arandela plana</td>
</tr>
<tr>
<td>7</td>
<td>Perno</td>
</tr>
<tr>
<td>8</td>
<td>Placa retenedora de almohadilla de desgaste</td>
</tr>
<tr>
<td>9</td>
<td>Almohadilla de desgaste superior</td>
</tr>
<tr>
<td>10</td>
<td>Perno</td>
</tr>
<tr>
<td>11</td>
<td>Arandela plana</td>
</tr>
<tr>
<td>12</td>
<td>Cable</td>
</tr>
<tr>
<td>13</td>
<td>Tuerca (ajuste)</td>
</tr>
<tr>
<td>14</td>
<td>Retenedor</td>
</tr>
<tr>
<td>15</td>
<td>Arandela de seguridad</td>
</tr>
<tr>
<td>16</td>
<td>Perno</td>
</tr>
<tr>
<td>17</td>
<td>Perno</td>
</tr>
<tr>
<td>18</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>19</td>
<td>Perno</td>
</tr>
<tr>
<td>20</td>
<td>Escuadra retenedora de cable</td>
</tr>
<tr>
<td>21</td>
<td>Retenedor de cable</td>
</tr>
<tr>
<td>22</td>
<td>Rodillo guía</td>
</tr>
<tr>
<td>23</td>
<td>Perno</td>
</tr>
<tr>
<td>24</td>
<td>Pasador de polea</td>
</tr>
<tr>
<td>25</td>
<td>Grasera</td>
</tr>
<tr>
<td>26</td>
<td>Anillo elástico</td>
</tr>
<tr>
<td>27</td>
<td>Espaciador</td>
</tr>
<tr>
<td>28</td>
<td>Polea</td>
</tr>
<tr>
<td>29</td>
<td>Cojinete</td>
</tr>
<tr>
<td>30</td>
<td>Tapón</td>
</tr>
<tr>
<td>31</td>
<td>Perno</td>
</tr>
<tr>
<td>32</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>33</td>
<td>Suplemento</td>
</tr>
<tr>
<td>34</td>
<td>Perno</td>
</tr>
<tr>
<td>35</td>
<td>Perno</td>
</tr>
<tr>
<td>36</td>
<td>Conjunto de cables</td>
</tr>
<tr>
<td>37</td>
<td>Retenedor</td>
</tr>
<tr>
<td>38</td>
<td>Perno</td>
</tr>
<tr>
<td>39</td>
<td>Tuerca</td>
</tr>
<tr>
<td>40</td>
<td>Tuerca (bloque positivo)</td>
</tr>
<tr>
<td>41</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>42</td>
<td>Suplemento</td>
</tr>
<tr>
<td>43</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>44</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>45</td>
<td>Suplemento</td>
</tr>
<tr>
<td>46</td>
<td>Perno</td>
</tr>
<tr>
<td>47</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>48</td>
<td>Guía de cables</td>
</tr>
<tr>
<td>49</td>
<td>Arandela plana</td>
</tr>
<tr>
<td>50</td>
<td>Arandela de seguridad</td>
</tr>
<tr>
<td>51</td>
<td>Perno</td>
</tr>
<tr>
<td>52</td>
<td>Perno</td>
</tr>
<tr>
<td>53</td>
<td>Perno</td>
</tr>
<tr>
<td>54</td>
<td>Placa</td>
</tr>
<tr>
<td>55</td>
<td>Varilla</td>
</tr>
<tr>
<td>56</td>
<td>Polea</td>
</tr>
<tr>
<td>57</td>
<td>Cojinete</td>
</tr>
<tr>
<td>58</td>
<td>Perno</td>
</tr>
<tr>
<td>59</td>
<td>Retenedor</td>
</tr>
<tr>
<td>59</td>
<td>Retenedor</td>
</tr>
<tr>
<td>60</td>
<td>Pasador de polea</td>
</tr>
<tr>
<td>61</td>
<td>Almohadilla de desgaste</td>
</tr>
<tr>
<td>62</td>
<td>Perno</td>
</tr>
<tr>
<td>63</td>
<td>Tuerca (apretada)</td>
</tr>
</tbody>
</table>

FIGURA 4-18
Vea la Figura 4-18 para los pasos siguientes.

28. Retire los pernos (19), la escuadra retenedora de cables de retracción (20) y el retenedor de cables (21) de la parte trasera inferior de la sección TEL N.º 2 de la pluma. Almacene los cables de retracción 3/2/1, que ahora se encuentran libres, en una zona que evite que sufran daños durante el desarmado posterior de la pluma.

NOTA: Procure no comprimir ni aplastar los cables de retracción mientras eleva o sostiene la sección TEL N.º 2 de la pluma.

29. Rotule y retire las almohadillas de desgaste (2) y los suplementos (3) de la parte trasera de la sección TEL N.º 2 de la pluma (1).

30. Retire el cable de extensión 1/2/3 de la parte superior de la sección TEL N.º 2 de la pluma. Deslice la polea trasera central superior (4) hacia la parte trasera de la sección de pluma y quitela. Tire del bucle de cable hacia adelante y quítelo del retenedor de polea. El cable ahora está libre en la parte trasera de la pluma.

31. Afloje y quite los dos pernos (17) que fijan la almohadilla de desgaste (18) en la parte trasera de la sección TEL N.º 2 de la pluma. Afloje y quite los dos pernos (16), las arandelas de seguridad (15) y los retenedores (14) que fijan el cilindro de extensión en la parte trasera central de la sección TEL N.º 2 de la pluma. Conecte una eslinga a la parte trasera del cilindro de extensión y extráigalo de la sección TEL N.º 2 de la pluma aproximadamente un pie, manteniendo los cables de extensión 2/3/4 tensos. Eleve y apoye el cilindro de extensión aproximadamente 5 pulg.

NOTA: Evite dañar el rodillo guía del cable de retracción (22) cuando eleve el cilindro.

32. Retire los pernos (23) y el rodillo guía del cable de retracción (22) de cada lado de la sección TEL N.º 2 de la pluma. Tire del pasador de la polea de retracción (24) con las poleas como un conjunto (25—30) para sacarlo de su ranura en la parte trasera inferior de la sección TEL N.º 2 de la pluma. Elimine las rebabas que estén presentes en los extremos planos del pasador para evitar los daños producidos al cojinete de la polea si se quitan las poleas del pasador. Almacene el cable de modo que no interfiera para evitar daño.

33. Empuje el anclaje de retracción 4/3/2 (19, Figura 4-19) hacia adelante para sacarlo de su ranura en la parte trasera inferior de la sección TEL N.º 3 de la pluma y retírelo de la sección TEL N.º 3 de la pluma con la almohadilla de desgaste (18) adosada. Retire los cables de retracción 4/3/2 del anclaje y almacénelos en una zona donde no sufran daños durante el desarmado posterior de la pluma.

34. Marque la posición de las tuercas (39) que fijan los cables de extensión 5/4/3 (36) a la parte delantera de la sección TEL N.º 2 de la pluma. Afloje las tuercas y retire el retenedor (37) y el perno (38) al final de la rosca del cable.

Vea la Figura 4-19 para los pasos siguientes.

35. Retire los pernos (16) y los rodillos guía (15) de cada lado de la parte trasera inferior de la sección TEL N.º 3 de la pluma.

36. Retire los pernos de anclaje del cable de retracción 5/4/3 (10, Figura 4-20) de la parte trasera interior de la sección TEL 4 de la pluma. Retire los cables de retracción 5/4/3 (36, Figura 4-18) de la placa de anclaje en la parte trasera inferior de la sección TEL 4 de la pluma y cuélguelos fuera del extremo de la parte trasera de la sección TEL N.º 2 de la pluma.

Vea la Figura 4-19 para los pasos siguientes.

37. Tire del pasador (20) con las poleas (23) y los cables como un conjunto para sacarlos de la ranura, ubicada en la parte trasera de la sección TEL N.º 3 de la pluma. Permita que el conjunto cuélgue de la parte trasera de la sección TEL N.º 2 de la pluma para retirar y rotular las poleas y cables del pasador.

38. Baje el cilindro a su posición original. Fije una eslinga o cadena a la punta de la sección TEL 4 de la pluma y tire de la sección TEL 4 para sacarla de la sección TEL N.º 3 de la pluma aproximadamente un pie. Retire el cilindro de extensión de la pluma, manteniendo los cables de extensión 2/3/4 tensos.

Vea la Figura 4-18 para los pasos siguientes.

39. Retire los pernos (62) y las almohadillas de desgaste (61) de la caja de poleas del cilindro de extensión.

40. Retire los pernos (52 y 53), las varillas (55) y la placa (54) de la caja de poleas. Retire las poleas (56) de la caja de poleas quitando los dos pernos (58) y el retenedor (59) del pasador de la polea (60). Golpee suavemente el pasador mientras quita las poleas de la parte delantera de la caja de poleas.

41. Retire los cables de extensión 2/3/4 del pasador (20, Figura 4-19) y almacene los cables y el cilindro de extensión en una área donde no se dañen durante el desarmado posterior de la pluma.

42. Retire las tuercas (13, 40 y 63) (si las tiene) que fijan los cables de extensión 3/4/5 (12) a la parte trasera superior de la sección TEL N.º 2 de la pluma. Empuje la sección TEL 4 de la pluma de vuelta en la sección TEL N.º 3 de la pluma. Instale el pasador de vuelta en la ranura en la parte trasera de la sección TEL N.º 3 de la pluma. Instale los cables de retracción 5/4/3 (36) en las placas de anclaje en la parte trasera inferior de la sección TEL 4 de la pluma.
43. Conecte una eslinga o cadena a la parte delantera de la sección TEL N.° 3 de la pluma y extraiga (con la sección TEL 4 de la pluma) aproximadamente 2 pies. Retire y rotule las almohadillas de desgaste laterales superior e inferior (41) y los suplementos (42).

44. Retire la almohadilla de desgaste superior (44), los suplementos (45), la guía de cables (48), la almohadilla de desgaste (47) y la tornillería relacionada (49—51) en la parte delantera superior de la sección TEL N.° 2 de la pluma (1).

45. Saque los cuatro pernos (38) que fijan el retenedor de cable de retracción 5/4/3 (37) a la punta inferior de la sección TEL N.° 2 de la pluma. Retire las almohadillas de desgaste (43) de la punta inferior de la sección TEL N.° 2 de la pluma. Tire de los anclajes de cables de retracción y mantenga los cables de retracción tensos mientras tira de la sección TEL N.° 3 de la pluma (con la sección TEL 4 de la pluma) para sacarlas de la sección TEL N.° 2 de la pluma.

46. Coloque las secciones TEL N.° 3 y TEL 4 de la pluma en una superficie horizontal adecuada.

NOTA: Procure no comprimir ni aplastar los cables de retracción mientras eleva o sostiene la sección TEL N.° 3 de la pluma.
Vea la Figura 4-19 para los pasos siguientes.

47. De ser necesario, rotule y quite las almohadillas de desgaste lateral (2) y los suplementos (3) y las almohadillas de desgaste inferiores (27), los suplementos (28) y los pernos (26) de la parte trasera de la sección TEL N.° 3 de la pluma.

48. Retire el pasador de la polea (20) de la parte trasera inferior de la sección TEL N.° 3 de la pluma quitando el pasador de los cables. Retire los cables (9, Figura 4-20) de las placas de anclaje en la parte trasera inferior de la sección TEL 4 de la pluma y almacénelos en una área.
donde no se dañen durante el desarmado posterior de la pluma.

49. Conecte una eslinga o cadena en la parte delantera de la sección TEL 4 de la pluma y extraiga la sección TEL 4 de la pluma aproximadamente 6 pies. Retire y rotule las almohadillas de desgaste laterales inferiores (39), los suplementos (38), las almohadillas de desgaste superiores (37) y los suplementos (36) de la parte delantera de la sección TEL N.° 3 de la pluma.

50. Retire los dos pernos (11), las arandelas (13) y tuercas (14) de las almohadillas de desgaste del cable de extensión 3/4/5 (12) en la parte trasera de la sección TEL N.° 3 de la pluma.

51. Retire las graseras (29) del pasador de polea (31) en la punta de la sección TEL N.° 3 de la pluma. Retire los diez pernos (30) que aseguran los pasadores de la polea (31) a las placas laterales de la sección TEL 4 de la pluma y retire las poleas (42).

52. Levante la parte delantera de la sección TEL N.° 3 de la pluma y retire las almohadillas de desgaste (40) de la sección TEL N.° 3 de la pluma. Tire de la sección TEL 4 de la pluma para sacarla de la sección TEL N.° 3 de la pluma manteniendo los cables de extensión tensos.
53. Coloque la sección TEL 4 de la pluma en una superficie horizontal adecuada. Procure no estrujar ni aplastar los cables de extensión mientras eleva o soporta la sección TEL 4 de la pluma. De ser necesario, marque y retire las almohadillas de desgaste y los suplementos de la parte trasera de la sección TEL 4 de la pluma.

54. Retire los cables de extensión 3/4/5 de las placas de anclaje en la parte trasera de la sección TEL 4 de la pluma y almacénelos en una área donde no se dañen durante el desarmado posterior de la pluma.

55. Retire las poleas (21) quitando los pernos (14), las arandelas de seguridad (15) y el retenedor (16) del pasador de la polea (17) golpeando ligeramente el pasador mientras retira las poleas y los espaciadores.

Mantenimiento adicional (pluma desarmada)

1. Limpie todas las secciones de la pluma e inspeccionelas en busca de desgaste, abolladuras, secciones dobladas o deformadas, metal acanalado, soldaduras rotas y toda condición anormal. Repare o reemplace según sea necesario.

2. Inspeccione todas las poleas en busca de desgaste excesivo de sus ranuras y desgaste anormal de sus aros. Reemplace según sea necesario.

3. Inspeccione todos los cojinetes de poleas en busca de desgaste excesivo o cortaduras en el forro interior. Si el diámetro del cojíneta instalado es 0.38 mm (0.015 pulg) mayor que el diámetro del pasador, es necesario sustituir el cojíneta. Cualquier cortadura o acanaladura que haga que el forro del cojíneta pierda material es motivo para sustituirla.

4. Limpie e inspeccione todos los conjuntos de cable según los procedimientos de inspección de cables dados en esta sección. Preste atención particular a la presencia de alambres rotos en las conexiones de los extremos. Reemplace los conjuntos de cable según se requiera. Lubrique los conjuntos de cable según se requiera. Lubrique todos los conjuntos de cable antes de volverlos a instalar en la pluma.

5. Inspeccione todos los pasadores de polea en busca de melladuras, acanaladuras o picaduras debidas a la formación de herrumbre en la superficie de soporte del cojinete. Reemplácelos si se observan daños.

6. Inspeccione todas las graseras y trayectorias de engrase de los pasadores para asegurar que la grasa fluya debidamente. Limpie y reemplace según sea necesario.

7. Reemplace todos los tapones de lubricación en todas las almohadillas de desgaste, según sea necesario.

8. Aplique grasa universal (MPG) a todas las superficies de las almohadillas de desgaste.

Armado de la pluma de cinco secciones

Vea la Figura 4-1 para las notas siguientes.

NOTA: Aplique pasta adhesiva/selladora de roscas de resistencia mediana Loctite™ tipo 243 (de acuerdo con las recomendaciones de Loctite) a toda la tornillería y apriete.

NOTA: No aplique pasta Loctite a ninguno de los extremos roscados de cables. Siempre utilice las contratuerces y/o tuercas provistas.

NOTA: Instale los cables en su condición natural sin retorcidas. No retuerza los cables. Si se retuerce el cable causará daños o la falla del cable. Durante el armado inicial de los extremos roscados de cables, enrosque la primera tuercita más allá de la parte plana para poder efectuar el ajuste posteriormente.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

NOTA: Para referencia, la parte delantera de la pluma es el extremo de la caja de poleas, la parte trasera es el extremo en donde se monta el malacate y los lados izquierdo y derecho se identifican mirando desde la parte trasera a la delantera.

Sección TEL 4 de la pluma

Vea la Figura 4-20 para los pasos siguientes.

1. Arme las poleas del cable de carga superior (21) y los cojinetes (19) en la caja de poleas de la sección TEL 4 de la pluma.
 a. Instale el pasador de polea (17) en el lado izquierdo de la caja de poleas superiores.
 b. Instale el espaciador pequeño (18).
 c. Instale las poleas (21) cerca de las placas laterales de la caja de poleas con la grasera (20) orientada hacia la placa lateral para permitir la lubricación.
 d. Instale el espaciador pequeño (18).
 e. Instale las poleas centrales (21) con la grasera (20) orientada hacia cualquier lado.
 f. Instale las poleas superiores (21) en el lado izquierdo de la pluma con el espaciador (25) en el lado derecho.
 g. Instale el retenedor (16) a ambos lados de la caja de poleas utilizando los pernos (14) y las arandelas de seguridad (15).
2. Arme las poleas del cable de carga inferior (21) y los cojinetes (19) en la caja de poleas de la sección TEL 4 de la pluma.
 a. Instale el pasador de polea (17) en el lado izquierdo de la caja de poleas.

 NOTA: Instale los espaciadores (18) entre las poleas y entre las poleas y las placas laterales.

 b. Instale el espaciador pequeño (18).

 c. Instale las poleas (21) cerca de las placas laterales de la caja de poleas con la grasera (20) orientada hacia la placa lateral para permitir la lubricación.

 d. Instale el espaciador pequeño (18).

 e. Instale las poleas centrales (21) con la grasera orientada hacia cualquier lado.

 f. Instale las poleas (21) en el lado derecho de la pluma.

 g. Instale el brazo (24) hacia el exterior de la caja de poleas.

 i. Instale el retenedor (16) en el lado derecho de la caja de poleas utilizando los pernos (14) y las arandelas (15).

 j. Instale el retenedor (16) en el lado izquierdo de la caja de poleas utilizando los pernos (14) y las arandelas (15).

 k. Instale el tubo (23) en la caja de poleas delanteras inferiores.

 l. Instale los tres pasadores de enganche (22) en la caja de poleas.

3. Instale las almohadillas de desgaste inferiores traseras (12), los suplementos (13), y los pernos (11) en la parte trasera de la sección TEL 4 de la pluma (1).

4. Instale las dos almohadillas de desgaste laterales (2) y los suplementos (3) en la parte trasera de la sección TEL 4 de la pluma (1). Coloque los suplementos según las instrucciones de calibración dadas en esta sección, o según estaban en las almohadillas de desgaste originalmente retiradas y marcadas. Vea la “Calibración de la pluma” en la página 4-49

 NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

Vea la Figura 4-19 para los pasos siguientes.

5. Levante y apoye la sección TEL 4 de la pluma (1) en la parte delantera de la sección TEL N.° 3 de la pluma.

 a. Pase el extremo roscado de los cables de extensión 3/4/5 (43) a través de la punta de la sección TEL N.° 3 de la pluma (1) hasta sacarlo por la parte trasera de la sección TEL N.° 3 de la pluma.

 b. Pase el extremo con botón de los cables de extensión 3/4/5 (43) hacia atrás más allá del anclaje de cables de la sección TEL 4 de la pluma e instale el extremo con botón de los cables de extensión 3/4/5 en las placas de anclaje del lado exterior de la parte trasera de la sección TEL 4 de la pluma y tire para tensar.

Secciones TEL 4 y TEL N.° 3 de la pluma

Vea la Figura 4-21 para el paso siguiente.

1. Instale la sección TEL 4 de la pluma en la sección TEL N.° 3 de la pluma aproximadamente 5 pies.

 NOTA: Procure no dañar los cables de extensión 3/4/5.

Vea la Figura 4-19 para los pasos siguientes.

2. Levante la sección TEL 4 de la pluma contra la parte superior de la sección TEL N.° 3 de la pluma e instale las almohadillas de desgaste (40) y los pernos (34) en la parte delantera inferior de la sección TEL N.° 3 de la pluma y lubrique.

3. Baje la sección TEL 4 de la pluma sobre las almohadillas de desgaste en la sección TEL N.° 3 de la pluma.

4. Instale el conjunto de poleas de extensión 3/4/5 (42) dentro de la parte delantera de la sección TEL N.° 3 de la pluma.

 a. Instale el conjunto de cojinete (35) en la polea (42).

 b. Instale los tapones de desgaste (32) en los agujeros pequeños de cada polea (42).

 c. Pase los cables de extensión 3/4/5 (43) alrededor de las poleas de extensión 3/4/5 (42) e instale las poleas en la sección TEL N.° 3 de la pluma.

 NOTA: No retuerza los cables. Retorcer los cables causará daños o la falla del cable. Durante el armado inicial de los extremos roscados de cables, enrosque la primera tuerca más allá de la parte plana para poder efectuar el ajuste posteriormente.
d. Instale los pasadores de poleas (31) y los tapones (32) en los agujeros empotrados en los lados de la punta de la sección TEL N.° 3 de la pluma.

f. Instale las graseras (29) en los pasadores de polea de extensión 3/4/5 (31) y aplique grasa multipropósito (MPG) a la grasa.

5. Instale las almohadillas de desgaste laterales (39), los suplementos (38) y los pernos (33) en la parte interior delantera de la sección TEL N.° 3 de la pluma.

6. Instale el conjunto guía de cables (47) en la parte superior de la sección TEL N.° 3 de la pluma.

a. Instale la almohadilla de desgaste de acero superior (44) y los suplementos (45) entre la sección TEL N.° 3 de la pluma y la parte superior de la sección TEL 4 de la pluma.

b. Instale el perno (51) en los agujeros traseros solamente.

c. Instale la guía del cable (47) en la parte delantera exterior de la sección TEL N.° 3 e instale los pernos (50), la arandela de seguridad (49) y la arandela plana (48) en la parte delantera superior de la sección TEL N.° 3 de la pluma.

NOTA: Coloque los suplementos según las instrucciones de calibración dadas en esta sección, o según estaban en las almohadillas originalmente retiradas y marcadas.

d. Empuje la sección TEL 4 de la pluma completamente en la sección TEL N.° 3 de la pluma manteniendo los cables de extensión 3/4/5 tensos.

e. Haga una marca en la punta de la sección TEL 4 de la pluma delante de las almohadillas de desgaste laterales en la sección TEL N.° 3 de la pluma, para la secuencia de retracción.

7. Instale las almohadillas retenedoras de los cables de extensión 3/4/5 (12) con el rebordo biselado orientado hacia arriba y hacia el interior de la parte trasera de la sección TEL N.° 3 de la pluma para soportar el cable.

8. Instale solamente el perno superior (11), la arandela (13) y la tuerca (14). Gire la almohadilla de desgaste (12) y posicione los cables de extensión 3/4/5 entre la abertura de la almohadilla retenedora de cable y la placa lateral con el extremo roscado del cable de extensión 3/4/5 colocado más allá de la parte trasera de la sección TEL N.° 3 de la pluma. Gire la almohadilla de desgaste (12) a su lugar e instale el perno inferior (11), la arandela (13) y la tuerca (14) y apriete los dos pernos. (Vea “Sujetadores y valores de apriete” en la página 1-7.)

Vea la Figura 4-20 para los pasos siguientes.

9. Pase el extremo roscado del cable de retracción 5/4/3 (9) por la abertura de la polea en la parte trasera inferior de la sección TEL N.° 3 de la pluma y tire de los extremos roscados de los cables de retracción 5/4/3 hacia la punta de la pluma.

10. Instale el extremo de botón del cable de retracción 5/4/3 (9) en el anclaje de cable en el extremo interior de la parte trasera de la sección TEL 4 de la pluma.

11. Instale el perno retenedor de cable (10) para asegurar el cable.

Vea la Figura 4-19 para los pasos siguientes.

12. Instale temporalmente el conjunto de pasador de retracción-extensión 2/3/4 (20) con las poleas (23) en la parte trasera inferior de la sección TEL 4 de la pluma como ayuda para posicionar los cables en el armado de la sección siguiente.

13. Extienda la sección TEL 4 aproximadamente un pie para instalar las almohadillas de desgaste superiores por la abertura en la parte superior de la pluma en la parte trasera de la sección TEL N.° 3.

14. Instale las dos placas retenedoras de almohadillas de desgaste superiores (7), las almohadillas de desgaste superiores (10), la placa de leva de ajuste (4), los pernos (9) y las arandelas (8).

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

15. Gire la leva (4) hasta eliminar la separación entre la almohadilla de desgaste y la sección de la pluma, manteniendo las secciones centradas para la alineación correcta de la pluma.

Secciones TEL N.° 3 y TEL N.° 2 de la pluma

Vea la Figura 4-19 para los pasos siguientes.

1. Instale la almohadilla de desgaste inferior (27), los suplementos (28) y los pernos (26) en la parte trasera de la sección TEL N.° 3 de la pluma (4).

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

2. Instale las dos almohadillas de desgaste laterales (2) y los suplementos (3) en los pasadores en la parte trasera de la sección TEL N.° 3 de la pluma. Coloque los suplementos según las instrucciones de calibración dadas en esta sección, o según estaban en las almohadillas originalmente retiradas y marcadas.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

3. Levante y apoye las secciones TEL N.° 3 y TEL 4 e instálelas en la sección TEL N.° 2 de la pluma aproximadamente 15 pies.
NOTA: Mantenga los cables de retracción 5/4/3 tensos, sin entrecruzarlos y manteniéndolos alejados de los puntos de estricción creados por las eslingas y almohadillas inferiores.

Vea la Figura 4-18 para los pasos siguientes.

4. Levante las secciones TEL N.° 3 y TEL 4 de la pluma contra la parte superior de la sección TEL N.° 2 de la pluma e instale las almohadillas de desgaste (43) y el perno (35) en la parte delantera inferior de la sección TEL N.° 2 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

5. Baje las secciones TEL N.° 3 y TEL 4 de la pluma sobre las almohadillas de desgaste en la sección TEL N.° 2 de la pluma. Empuje las secciones TEL N.° 3 y TEL 4 de la pluma en la sección TEL N.° 2 de la pluma, dejando aproximadamente 4 pies de las secciones TEL N.° 3 y TEL 4 de la pluma fuera de la sección TEL N.° 2 de la pluma.

6. Instale el retenedor (37) en los cables de retracción 5/4/3. Instale las tuercas (39) apenas pasada de las partes planas de la llave torsiométrica en el extremo roscado de los cables de retracción, mÓntelos en la parte frontal inferior de la sección TEL N.° 2 de la pluma y asegúrelos con los pernos (38).

7. Instale las almohadillas de desgaste laterales inferiores (41) y los suplementos (42) en el interior del lado delantero de la sección TEL N.° 2 de la pluma y asegure con pernos (34).

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

8. Instale las almohadillas de desgaste laterales superiores (41) y los suplementos (42) en el interior de la parte delantera de la sección TEL N.° 2 de la pluma y asegure con pernos (34).

NOTA: Puede ser necesario apoyar los componentes con una barra o herramienta que se extienda en el interior de la sección de la pluma para ayudar a posiciónar los componentes durante el armado.

9. Instale la almohadilla de desgaste superior (44), los suplementos (45), la guía de cables (48), la almohadilla de desgaste (47) y la tornillería relacionada (49—51) en la parte delantera superior de la sección TEL N.° 2 de la pluma. Coloque los suplementos según las instrucciones de calibración dadas en esta sección, o según estaban en las almohadillas originalmente retiradas y marcadas.

NOTA: Instale los cables en su condición natural sin retorcéulas. No retuerza los cables. Retorcer los cables causará daños o la falla del cable. Durante el armado inicial de los extremos roscados de cables, enrosque la primera tuerca más allá de la parte plana para poder efectuar el ajuste posteriormente.

11. Retire los cables de retracción 5/4/3 previamente armados de la placa en la parte trasera inferior de la sección TEL 4 de la pluma y cuélguelos alejados de la parte trasera de la pluma.

12. Tire de la sección TEL 4 de la pluma para sacarla de la sección TEL N.° 3 de la pluma aproximadamente 12 pulg.

13. Arme e instale el cilindro hidráulico.
 a. Instale los cojinetes (57) en las poleas (56).
 b. Cubra los cojinetes con grasa universal e instale las poleas en el cilindro de extensión.
 c. Instale el conjunto de pasador (60) a través de la caja de poleas del cilindro, asegurándolo con el retenedor (59) y los pernos (58).
 d. Instale dos almohadillas de desgaste (61) a cada lado de la punta delantera del cilindro de extensión con el perno (62).

14. Enhebre los cables de extensión 2/3/4 en las poleas (56) en la parte delantera del conjunto de cilindro hidráulico, pasando los cables por detrás del cilindro hidráulico en el orden correcto.

NOTA: Marque los extremos de los cables para mantener la secuencia correcta durante el armado para impedir el cruce de los cables.

15. Instale las varillas (55) y los pernos (52). Instale la placa (54) y los pernos (53) en la parte inferior de la caja de poleas.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

16. Instale el cilindro hidráulico en la parte trasera de la sección TEL 4 de la pluma, dejando aproximadamente 2 pies expuestos del cilindro hidráulico. Empuje la sección TEL 4 de la pluma completamente en la sección TEL N.° 3 de la pluma y eleve el cilindro hidráulico hasta la parte superior de la sección TEL N.° 2 de la pluma.

Vea la Figura 4-19 para los pasos siguientes.

17. Arme e instale el conjunto de pasador de polea (20) en la placa de anclaje en la parte trasera inferior de la sección TEL N.° 3 de la pluma (1).
 a. Instale los tres cables en el pasador de polea (20).
b. Instale una arandela (21) y un anillo elástico (22) a cada lado de los cables exteriores.

c. Instale un anillo elástico (22) y una arandela (21) dentro de cada polea.

d. Instale un cojinete (24) en las dos poleas (23) y aplique grasa para chasis con una brocha. Instale las poleas en ambos extremos del pasador de polea.

e. Haga un bucle con los cables de retractorción 5/4/3 alrededor de las poleas y el conjunto de pasador de polea.

f. Instale los tapones (25) en ambos extremos del pasador de polea.

g. Instale el conjunto de pasador en el retenedor en la parte trasera de la sección TEL N.° 3 de la pluma e instale el extremo del botón de los cables de retracción 5/4/3 en la placa de anclaje en la parte trasera inferior de la sección TEL 4 de la pluma.

Vea la Figura 4-20 para los pasos siguientes.

h. Instale el perno retenedor de cable (10) en el agujero roscado del bloque retenedor de cable en la parte trasera inferior de la sección TEL 4 de la pluma.

i. Instale las graseras (20) hacia la parte trasera de la pluma.

j. Aplique grasa universal (MPG) a las graseras.

Vea la Figura 4-19 para los pasos siguientes.

18. Instale las guías de cables de retracción (15) y el perno (16) en la parte trasera de la sección TEL N.° 3 de la pluma.

NOTA: Tenga cuidado al mover el cilindro para evitar dañar las guías de cables.

19. Baje el cilindro hidráulico y empújelo en la sección TEL N.° 2 de la pluma manteniendo los cables tensos hasta aproximadamente un pie detrás de los anclajes del cilindro hidráulico en la sección TEL N.° 2 de la pluma. Eleve la parte trasera del cilindro hidráulico hasta la parte superior de la sección TEL N.° 2 de la pluma.

20. Instale las almohadillas de desgaste (18) y los pernos (17) en la parte trasera de la sección TEL N.° 3 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

22. Instale los rodillos guía (15) y los pernos (16) en la parte trasera de la sección TEL N.° 2 de la pluma.

NOTA: Tenga cuidado al mover el cilindro para evitar dañar las guías de cables.

23. Baje el cilindro de extensión sobre la almohadilla de desgaste (18).

Secciones TEL N.° 2 y TEL N.° 1 de la pluma

Vea la Figura 4-18 para los pasos siguientes.

1. Instale las dos placas retenedoras de almohadillas de desgaste superiores (8), las almohadillas de desgaste (9), los pernos (10) y las arandelas planas (11) en la parte trasera de la sección TEL N.° 2 de la pluma (1).

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

2. Instale la placa de leva de ajuste (5), los pernos (7) y las arandelas planas (6).

3. Gire la placa de leva (5) hasta eliminar la separación entre la almohadilla de desgaste y la sección de la pluma manteniendo las secciones centradas para la alineación correcta de la pluma.

4. Instale la almohadilla de desgaste inferior (32), los suplementos (33) y los pernos (31) en la parte trasera de la sección TEL N.° 2 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

5. Instale las dos almohadillas de desgaste laterales (2) y los suplementos (3) en la parte trasera de la sección TEL N.° 2 de la pluma. Instale suplementos siguiendo las instrucciones de calibración dadas en “Calibración de la pluma” en la página 4-49.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

Vea la Figura 4-17 para los pasos siguientes.

6. Estire el cable de extensión (43), después vuelva a unir los extremos roscados para formar un bucle y determine el punto central del tramo de cable.

a. Deslice este bucle central de adelante hacia atrás por la ranura de anclaje del cable en la parte trasera superior de la sección TEL N.° 2 de la pluma.

Vea la Figura 4-18 para los pasos siguientes.

b. Deslice la polea (4) en esta ranura desde la parte de atrás hacia adelante de manera que la parte elevada de la polea se deslice en la ranura de la placa de anclaje del cable.

c. Tire de este bucle de cable hacia adelante para trazar el cable de extensión en la sección TEL N.° 2 de la pluma.
Vea la Figura 4-17 para los pasos siguientes.

d. Coloque el conjunto de anclaje de poleas (48) en la parte delantera superior de la sección TEL N.° 2 de la pluma con su barra superior hacia arriba y hacia adelante.

e. Pase los dos extremos roscados del cable de extensión (43) hacia la parte trasera de la pluma para formar dos bucles, izquierdo y derecho, ubicados en la parte delantera de la pluma. Deslice los bucles izquierdo y derecho en los lados izquierdo y derecho del conjunto de caja de poleas.

f. Instale los cojinetes (45) en las poleas (44).

g. Pase una brocha con grasa para chasis.

h. Instale los pasadores de extremo plano (46) en las poleas.

NOTA: Asegúrese de que las graseras queden orientadas hacia la parte trasera de la pluma.

i. Deslice el conjunto de pasador en las ranuras en la parte delantera del conjunto de caja de poleas (48). Pliegue hacia atrás y coloque la caja de poleas armadas en la parte superior de las secciones de la pluma durante el armado de la siguiente sección de la pluma.

j. Pase y ponga los extremos roscados del cable de sincronización de extensión hacia la parte trasera de la pluma y forme un bucle sobre la parte trasera de la pluma.

NOTA: Asegúrese de que las orejetas del cilindro de la sección TEL N.° 1 de la pluma estén horizontales.

7. Levante y apoye las secciones TEL N.° 2, TEL N.° 3 y TEL 4 e instálelas en la sección TEL N.° 1 de la pluma aproximadamente 15 pies.

NOTA: Mantenga los cables de retracción 4/3/2 tensos, no permita que se entrecruzan y manténgalos alejados de los puntos de estricción creados por las eslingas y almohadillas inferiores.

8. Levante las secciones TEL N.° 2, TEL N.° 3 y TEL 4 de la pluma contra la parte superior de la sección TEL N.° 1 de la pluma e instale las almohadillas de desgaste (37) y los pernos (36) en la parte delantera inferior de la sección TEL N.° 1 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

9. Arme las placas retenedoras de cables de retracción 4/3/2 (41) y los pernos (35) en los cables de retracción 4/3/2. Instale las dos tuercas (39) justo después de las partes planas de la llave en los cables de retracción 4/3/2 y ármelos en la punta inferior de la sección TEL N.° 1 de la pluma.

NOTA: Tenga cuidado de no entrecruzar los cables. No retuerza los cables. Retorcer los cables causará daños o la falla del cable. Durante el armado inicial de los extremos roscados de cables, enrosque la primera tuerca más allá de las partes planas de la llave para poder efectuar el ajuste posteriormente.

10. Instale las almohadillas de desgaste laterales inferiores (25), los suplementos (26 y 27) y los pernos (35) en la parte delantera interior de la sección TEL N.° 1 de la pluma.

11. Instale el conjunto de almohadillas de desgaste superiores (25), los suplementos (26 y 27) y los pernos (35) en la parte delantera superior de la sección TEL N.° 1 de la pluma.

NOTA: Puede ser necesario apoyar los componentes con una barra o herramienta que se extienda en el interior de la sección de la pluma para ayudar a posicionar los componentes durante el armado.

12. Deslice el conjunto de anclaje de polea del cable de extensión 1/2/3 previamente ensamblado en su posición en la sección TEL N.° 1 de la pluma.

13. Instale las graseras (47) en los pasadores de polea de extensión 1/2/3 (46).

14. Instale las almohadillas de desgaste (28) y los suplementos (29) en la parte delantera superior de la sección TEL N.° 1 de la pluma. Instale la almohadilla de desgaste (34), la guía de cables (33) y la tornillería relacionada (30—32) en la parte delantera superior de la sección TEL N.° 1 de la pluma. Instale suplementos siguiendo las instrucciones de calibración dadas en esta sección.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

15. Empuje las secciones TEL N.° 2, TEL N.° 3 y TEL 4 de la pluma en la sección TEL N.° 1 de la pluma hasta que toque fondo contra las orejetas del cilindro. Instale el perno (21) y la arandela plana (22) con Loctite para retenir el cilindro de la sección TEL N.° 1 en la sección TEL N.° 1 de la pluma.

Vea la Figura 4-18 para los pasos siguientes.
MANTECINEMIENTO DE LA PLUMA

16. Instale la almohadilla de desgaste del cable (18) con el perno (17) en la parte superior del tubo del cilindro hidráulico.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

17. Instale el cilindro hidráulico en las ranuras en la parte trasera de la sección TEL N.° 2 de la pluma. Instale los retenedores (14), el perno (16) y las arandela de seguridad (15) con Loctite para retener el cilindro de la sección TEL N.° 1 en la sección TEL N.° 1 de la pluma.

Vea la Figura 4-17 para los pasos siguientes.

18. Instale la almohadilla de desgaste (19) encima del conjunto de anclaje del cable (18), después instale el conjunto de anclaje del cable de extensión 2/3/4 en las ranuras de la parte trasera de la sección TEL N.° 1 de la pluma, mientras guía los cables de extensión 2/3/4 hasta el conjunto de anclaje de cable. Instale las tuercas (15—17) (si corresponde) tal como se quitaron de los extremos roscados de los cables de extensión 2/3/4.

NOTA: No retuerza los cables. Retorcer los cables causará daños o la falla del cable. Durante el armado inicial de los extremos roscados de cables, enrosque la primera tuerca más allá de las partes planas de la llave para poder efectuar el ajuste posteriormente.

19. Fije el conjunto de anclaje del cable (18) en su lugar con el tornillo de cabeza hueca (24) pasado por las placas laterales superiores de la sección TEL N.° 1 de la pluma. Compruebe que los cables de sincronización de extensión 1/2/3 (43) estén colocados sobre la parte superior del anclaje del cable de extensión 2/3/4.

Vea la Figura 4-18 para los pasos siguientes.

20. Pase los tres cables de retracción 3/2/1 alrededor de los rodillos guía (5) y los pernos (4) en la parte trasera de la sección TEL N.° 1 de la pluma y los suplementos de almohadilla inferior.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

21. Arme e instale el pasador (24) en la placa de anclaje en la parte trasera inferior de la sección TEL N.° 1 de la pluma.

a. Instale un anillo elástico (26) en la ranura interior del pasador de la polea (24). Repita este paso para la otra ranura interna del pasador.

b. Instale un espaciador (27) en ambos lados del pasador.

c. Instale el cojinete (29) en las poleas (28), pase una brocha con grasa universal (MPG) e instale una polea en cada extremo del pasador.

d. Instale los espaciadores (27) en las partes exteriores de las poleas en el pasador.

e. Instale el anillo elástico (26) en el exterior de las arandelas en la ranura exterior del pasador.

f. Instale el tapón (30) en el extremo del pasador de polea (24).

g. Haga un bucle con los cables de retracción 3/2/1 alrededor de las poleas de ranura triple (28) y el conjunto de pasador de la polea de retracción (24).

Vea la Figura 4-17 para los pasos siguientes.

22. Instale los tornillos de fijación del pasador de retracción 3/2/1 (6) detrás del pasador de la polea de retracción (7) en la parte posterior de la sección TEL N.° 1 de la pluma.

23. Instale las graseras hacia la parte trasera de la pluma.

25. Instale los rodillos guía (5) y los pernos (4) en la parte trasera de la sección TEL N.° 1 de la pluma.

26. Instale la almohadilla de desgaste inferior (13), los suplementos (14) y los pernos (12) en la parte trasera de la sección TEL N.° 1 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

27. Pase los cables de retracción 3/2/1 entre la parte inferior de la sección TEL N.° 1 de la pluma y los suplementos de almohadilla inferior.

Vea la Figura 4-15 para los pasos siguientes.

28. Instale dos placas retenedoras de almohadillas de desgaste superiores (6), las almohadillas de desgaste superiores (7), los pernos (4) y las arandelas (5) en la parte trasera de la sección TEL N.° 1 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

29. Instale la placa de leva (3), los pernos (1) y las arandelas (2).

Secciones TEL N.° 1 y base de la pluma

Vea la Figura 4-17 para los pasos siguientes.

1. Instale la almohadilla de desgaste inferior (13), los suplementos (14) y los pernos (12) en la parte trasera de la sección TEL N.° 1 de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

2. Instale las dos almohadillas de desgaste laterales (2) y los suplementos (3) en la parte trasera de la sección TEL N.° 1 de la pluma. Instale suplementos siguiendo las instrucciones de calibración dadas en "Calibración de la pluma" en la página 4-49.
10. Instale el conjunto de almohadillas de desgaste superiores (19), los suplementos (17 y 18) y el perno (16) en la parte delantera superior de la sección de base de la pluma.

NOTA: Puede ser necesario apoyar los componentes con una barra o herramienta que se extienda en el interior de la sección de la pluma para ayudar a posicionar los componentes durante el armado.

11. Instale la placa superior (9), los suplementos (10) y la tornillería (11—13) en la parte delantera de la sección de base de la pluma con Loctite aplicado en los pernos. Instale suplementos siguiendo las instrucciones de calibración dadas en esta sección.

12. Empuje las secciones TEL N.° 1, TEL N.° 2, TEL N.° 3 y TEL 4 de la pluma, mientras mantiene los cables de retracción 3/2/1 tensos, completamente en la sección de base de la pluma o hasta que la almohadilla de desgaste superior quede alineada con el agujero de acceso superior en la sección de base de la pluma.

NOTA: Aplique grasa universal (MPG) a todas las superficies de contacto y de almohadillas de desgaste.

14. Instale la varilla del cilindro de la sección de base en el montaje del cilindro hidráulico de la sección de base de la pluma con arandelas (3) y perno (2) con Loctite aplicado y apriete según las especificaciones.

NOTA: En este paso es importante tener las tuercas flojas en los cables de retracción 3/2/1 en la punta inferior de la sección de base de la pluma.
18. Instale la guía del cable, la arandela y la tuerca en los pernos de montaje en la parte superior central de la sección de base de la pluma.
19. Extienda la pluma y alinee todas las secciones de la pluma de acuerdo con el procedimiento de alineación de la pluma.
20. Instale la cubierta de inspección (11) con la tornillería (9 y 10) en la parte superior trasera de la sección de base de la pluma.
21. Instale el péndulo, el cojinete, la arandela plana y la tuerca en el lado izquierdo de la sección de base de la pluma.

Tensión de cable de cinco secciones

Después de volver a armar la pluma, u ocasionalmente si los cables de proporción interiores parecen estar sueltos, podría ser necesario tensar los cables.

Procedimiento de preparación del tensado

El tensado debe efectuarse con la pluma en posición horizontal.

Al apretar o aflojar las primeras tuercas (de ajuste) en los cables, sujete el cable utilizando las partes planas para la llave de tuercas en la parte delantera de los extremos del cable para evitar que el cable se retuerza. El retorcimiento excesivo de los cables puede causar la falla prematura.

Asegúrese de que la pluma esté completamente armada y totalmente retraída.

1. Marque la parte delantera de cada sección con una línea de tiza, como se muestra en la Figura 4-22.
2. Extienda y retraiga la pluma varias veces para establecer el estado de funcionamiento de los cables.
3. Extienda la pluma de modo que las líneas marcadas queden expuestas aproximadamente 12 pulg.
4. Mida la separación de la extensión entre cada sección de pluma y la línea marcada y anote los valores.
5. Retraiga la pluma de modo que las líneas marcadas queden expuestas aproximadamente 6 pulg.
6. Mida la separación de la retracción entre cada sección de pluma y la línea marcada y anote los valores.
7. Extienda y retraiga la pluma unas pocas veces y luego repita la medición de las separaciones de la extensión.
8. Ajuste todos los cables correspondientes de acuerdo a las instrucciones de secuencia de tensión de los cables. Vea “Secuencia de tensado de cable” en la página 4-44.

NOTA: Al ajustar el cable, sujete el extremo del cable y gire la tuerca. No gire el cable. Si el cable gira durante el ajuste, esto podría causar daños o la falla del cable.

Secuencia de tensado de cable

La pluma debe estar en posición horizontal cuando se ajuste la tensión del cable (vea la Figura 4-22). Retraiga la pluma totalmente, asegurándose de que las secciones estén contra los topes de sección y que no retrocedan. (Vea la Procedimiento de preparación del tensado)

Para equilibrar los cables 3/2/1 y 1/2/3

Extensión

1. Mida las separaciones de extensión entre las secciones primera y segunda y entre las secciones segunda y tercera.

Si la separación de extensión entre la primera y segunda sección es menor que la separación de extensión entre la segunda y tercera sección:

2. Apriete el cable de retracción 3/2/1, ubicado en la parte delantera inferior de la sección trasera, al valor de diferencia en las mediciones de separación de extensión.

FIGURA 4-22
3. Extienda y retraiga la pluma unas pocas veces y luego repita la medición de las separaciones de la extensión.

NOTA: La segunda sección debería haberse movido hacia afuera.

4. Apriete hasta que la separación de extensión entre las secciones primera y segunda y la separación de extensión entre las secciones segunda y tercera sean iguales.

Si cuando se aprieta el cable de retracción 3/2/1, la tercera sección comienza a salir con la segunda sección, es posible que tenga que aflojar el cable de sincronización 1/2/3, ubicado en la parte superior trasera de la sección trasera.

Retracción

1. Mida las separaciones de retracción entre las secciones primera y segunda y entre las secciones segunda y tercera.

Si la separación de retracción es mayor entre la primera y segunda sección que entre las secciones segunda y tercera:

2. Apriete el cable de sincronización 1/2/3, ubicado en la parte trasera de la sección trasera, al valor de diferencia en las mediciones de separación de retracción.

3. Extienda y retraiga la pluma unas pocas veces y luego repita la medición de las separaciones de la retracción.

NOTA: La tercera sección debería haberse movido hacia afuera.

4. Apriete hasta que la separación de retracción entre la primera y segunda sección y la separación de retracción entre las secciones segunda y tercera sean igual.

En este punto, las secciones primera, segunda y tercera extensibles y retraíbles deberían extenderse y retraerse igualmente y tocar los topes simultáneamente.

Para equilibrar los cables 3/4/5 y 5/4/3

Extensión

1. Mida las separaciones de extensión entre las secciones cuarta y quinta y entre las secciones tercera y cuarta.

Si la separación de extensión entre la cuarta y quinta sección es menor que la separación de extensión entre las secciones tercera y cuarta:

2. Apriete el cable de extensión 3/4/5, ubicado en la parte trasera superior de la tercera sección, al valor de diferencia en las mediciones de separación de extensión.

3. Extienda y retraiga la pluma unas pocas veces y luego repita la medición de las separaciones de la extensión.

NOTA: La quinta sección debería moverse hacia afuera.

4. Continúe apretando hasta que la separación de extensión entre las secciones cuarta y quinta sea igual que la separación de extensión entre las secciones tercera y cuarta.
Retracción

1. Mida las separaciones de retracción entre las secciones cuarta y quinta y entre las secciones tercera y cuarta.

Si la separación de retracción es mayor entre la cuarta y quinta sección que entre la tercera y cuarta sección:

2. Apriete el cable de retracción 5/4/3, ubicado en la parte delantera inferior de la tercera sección, el valor de diferencia en las mediciones de separación de retracción.

3. Extienda y retraiga la pluma unas pocas veces y luego repita la medición de las separaciones de la retracción. La quinta sección debería haberse movido hacia adentro.

4. Continúe apretando hasta que la separación de retracción entre la quinta y cuarta sección sea igual que la separación de retracción entre la cuarta y tercera sección.

En este punto, todas las secciones de pluma deberían extenderse y retraerse igualmente y tocar los topes simultáneamente.

Retención de cable

La configuración de las tuercas será: primera tuerca (ajuste) y segunda tuerca (apretada) vea la Figura 4-23.

NOTA: Use la Opción 2 solo cuando las restricciones de espacio impidan el uso de la Opción 1 (vea la Figura 4-23).

Al apretar o aflojar la primera tuerca (2) en los cables, sujete los cables utilizando las partes planas de la llave de tuercas en la parte delantera de los extremos del cable para evitar que el cable se retuerza.

Después de completar el procedimiento de ajuste del cable para todo el conjunto de la pluma, instale y apriete la segunda tuerca (6) en todos los cables de retracción y extensión.

La segunda tuerca debe apretarse con la mano hasta que entre en contacto con la parte trasera de la primera tuerca.

Mantenga la primera tuerca (2) fija y use una llave torsiométrica para apretar la segunda tuerca (6) contra la primera tuerca. Vea “Valores de apriete para la segunda contratuerca” en la página 4-47.

Instale la tercera tuerca (3) en cada uno de los cables de extensión. Los cables de retracción no requieren la tercera tuerca.

La tercera tuerca debería apretarse con la mano hasta que el agujero roscado para el tornillo de fijación quede tangente a la cara del extremo de las partes planas para llave de tuercas.

Instale el tornillo de fijación en la tercera tuerca (3) y apriete.
Sustitución de almohadillas superiores e inferiores de la pluma de cinco secciones (armada)

Inspeccione las almohadillas de desgaste superiores e inferiores periódicamente en busca de señales de abrasión o desgaste excesivo.

El desgaste excesivo es un desgaste superior a 4.78 mm (3/16 pulg) con respecto al grosor original, las almohadillas inferiores de la base, TEL N.º 1 y TEL N.º 2 tienen un grosor de 29.8 mm (1.17 pulg); las almohadillas inferiores de la sección TEL N.º 3 tienen un espesor de 11.6 mm (0.45 pulg); las almohadillas superiores de la sección TEL N.º 1, TEL N.º 3 y TEL 4 tienen un espesor de 11.6 mm (0.45 pulg); las almohadillas superiores de la sección TEL N.º 2 tienen un espesor de 25.4 mm (1.0 pulg). Cuando las almohadillas muestran un desgaste excesivo, como el borde exterior de la almohadilla desgastada a más de 1.59 mm (0.0625 pulg) de profundidad con respecto al borde interior de la almohadilla. Si se descubre cualquiera de estas condiciones, las almohadillas superiores e inferiores pueden sustituirse sin necesidad de desarmar la pluma.

Además, si la extensión de la pluma funciona de modo errático, o cuando se sustituyan las almohadillas superiores e inferiores, se recomienda sustituir los tapones de lubricación de las almohadillas de desgaste por tapones nuevos. Estos tapones de lubricación nuevos inicialmente sobresalen 1.5 mm (0.06 pulg) por encima de la superficie de la almohadilla y aplican una capa duradera de lubricante sobre la superficie deslizante de la pluma.

Sustitución de las almohadillas superiores

NOTA: Todas las almohadillas de desgaste deben marcarse, inspeccionarse y rearmarse exactamente al estado en que se quitaron, a menos que se vaya a hacer un reacondicionamiento completo.

1. Retraiga la pluma completamente, luego extienda la pluma aproximadamente (17.75 pulg) o (4.44 pulg por sección) para que las almohadillas de desgaste superiores en la sección TEL N.º 2 de la pluma sean visibles a través de los agujeros en las placas superiores de las secciones base y TEL N.º 1 de la pluma.

2. Retire los pernos de la parte trasera superior de las placas retenedoras de la almohadilla de desgaste de la sección TEL N.º 2 de la pluma y retire las placas retenedoras de la almohadilla de desgaste de la sección TEL N.º 2 de la pluma. Marque estas placas retenedoras de manera que puedan reinstalarse exactamente como estaban al quitarlas. Retire las almohadillas de desgaste de la sección TEL N.º 2 de la pluma.

3. Si es necesario, marque la ubicación de las tuercas y afloje los cables de extensión 1/2/3 y quítelos de los agujeros de montaje en la parte trasera de la sección de base de la pluma. Ate los cables de extensión 1/2/3 con...

Valores de apriete para la segunda contratuerca

Tabla 4-2

<table>
<thead>
<tr>
<th>Serie de pulgadas con roscas gruesas (UNC)</th>
<th>Tamaño de rosca de extremo de cable</th>
<th>GRADO de resistencia mínimo de tuercas</th>
<th>Tipo de tuercas</th>
<th>PAR DE APRIETE Nm (lb pie)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contratuerca</td>
<td>16 Nm (12 lb pie)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hexagonal (MEDIA)</td>
<td></td>
</tr>
<tr>
<td>1/2-13 SAE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42 Nm (31 lb pie)</td>
<td></td>
</tr>
<tr>
<td>5/8-11 SAE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64 Nm (47 lb pie)</td>
<td></td>
</tr>
<tr>
<td>3/4-10 SAE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>85 Nm (63 lb pie)</td>
<td></td>
</tr>
<tr>
<td>7/8-9 SAE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>270 Nm (199 lb pie)</td>
<td></td>
</tr>
<tr>
<td>1-8 SAE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>275 Nm (203 lb pie)</td>
<td></td>
</tr>
<tr>
<td>1 1/4-7 SAE 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>339 Nm (250 lb pie)</td>
<td></td>
</tr>
<tr>
<td>1 1/2-6 SAE 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>339 Nm (250 lb pie)</td>
<td></td>
</tr>
<tr>
<td>1 3/4-5 ASTM B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Serie métrica con roscas gruesas</th>
<th>Tamaño de rosca de extremo de cable</th>
<th>Categoría de propiedades mínima de tuercas</th>
<th>Tipo de tuercas</th>
<th>PAR DE APRIETE Nm (lb pie)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Contratuerca</td>
<td>26 Nm (19 lb pie)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hexagonal (DELGADA)</td>
<td></td>
</tr>
<tr>
<td>M16 x 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>66 Nm (49 lb pie)</td>
<td></td>
</tr>
<tr>
<td>M20 x 2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MANTENIMIENTO DE LA PLUMA

1. Deslice las placas retenedoras y las almohadillas de desgaste hacia la parte trasera de la pluma y quítelas. Marque las placas retenedoras de manera que puedan instalarse exactamente como estaban cuando se quitaron.

2. Retire los pernos de los retenedores de cable de retracción 5/4/3 y mueva los retenedores y los cables hacia el centro de la pluma. Abra (para eliminar la tensión) las tuercas de los cables de retracción 5/4/3. Retire los pernos de los retenedores de cable de retracción 5/4/3 y mueva los retenedores y los cables hacia el centro de la pluma.

3. Marque la posición de las tuercas que fijan los cables de retracción 5/4/3 a la parte delantera inferior de la sección TEL N.° 2 de la pluma y apriételos al par de apriete correcto.

4. Retire los pernos avellanados de la parte inferior de la sección TEL N.° 2 de la pluma que conecta las placas retenedoras de las almohadillas de desgaste a la sección TEL N.° 3 de la pluma.

5. Saque los pernos (dos en cada almohadilla) que sujetan las almohadillas de desgaste inferiores en las secciones TEL N.° 3, TEL N.° 2, TEL N.° 1 y base de la pluma, y retire y sustituya las almohadillas. Instale los pernos, aplique Loctite y apriételos al par de apriete correcto.

6. Extienda la pluma aproximadamente (41.75 pulg) (10.44 pulg por sección), para que las almohadillas de desgaste superiores en la sección TEL N.° 1 de la pluma sean visibles a través del agujero en la placa superior de la sección de base de la pluma.

7. Retire los pernos de la parte trasera superior de las placas retenedoras de la almohadilla de desgaste de la sección TEL N.° 1 de la pluma y deslice las placas retenedoras de la almohadilla de desgaste hacia el centro de la pluma. Marque estas placas retenedoras de manera que puedan instalarse exactamente como estaban cuando se quitaron. Retire las almohadillas de desgaste de la sección TEL N.° 1 de la pluma.

8. Reinstale las almohadillas de desgaste de la sección TEL N.° 1 de la pluma e instale las placas retenedoras de las almohadillas de desgaste en la placa superior de la sección TEL N.° 1 de la pluma exactamente como se estaban cuando se quitaron. Aplique Loctite a todos los tornillos de montaje de cabeza plana.

9. Extienda la pluma aproximadamente 16.5 m (54.25 pies) para que la parte trasera de la sección TEL N.° 3 de la pluma pase el agujero en la placa lateral de la sección TEL N.° 2 de la pluma y de modo tal que la parte trasera de la sección TEL 4 de la pluma pase el orificio en la placa lateral de la sección TEL N.° 3 de la pluma. Levante la parte delantera de las secciones TEL N.° 3 y TEL 4 de la pluma para aliviar la presión en las almohadillas de desgaste en la parte superior trasera de las secciones TEL N.° 3 y TEL 4 de la pluma.

10. Retire los pernos avellanados de la parte inferior de la sección TEL N.° 3 de la pluma que conecta las placas retenedoras de las almohadillas de desgaste a la sección TEL N.° 3 de la pluma.

11. Deslice las placas retenedoras y las almohadillas de desgaste hacia la parte trasera de la pluma y quítelas. Marque las placas retenedoras de manera que puedan instalarse exactamente como estaban cuando se quitaron.

12. Reinstale las almohadillas de desgaste de la sección TEL N.° 3 de la pluma e instale las placas retenedoras de las almohadillas de desgaste exactamente como estaban cuando se quitaron en la placa superior de la sección TEL N.° 3 de la pluma. Aplique Loctite a todos los tornillos de montaje de cabeza plana.

13. Retire los pernos avellanados de la parte inferior de la sección TEL 4 de la pluma que conecta las placas retenedoras de las almohadillas de desgaste a la sección TEL 4 de la pluma.

14. Deslice las placas retenedoras y las almohadillas de desgaste hacia la parte trasera de la pluma y quítelas. Marque las placas retenedoras de manera que puedan instalarse exactamente como estaban cuando se quitaron.

15. Reinstale las almohadillas de desgaste de la sección TEL 4 de la pluma e instale las placas retenedoras de las almohadillas de desgaste exactamente como estaban cuando se quitaron en la placa superior de la sección TEL 4 de la pluma. Aplique Loctite a todos los tornillos de montaje de cabeza plana. Retraiga la pluma completamente.

Sustitución de las almohadillas inferiores

1. Baje la pluma hasta que el cilindro de elevación toque fondo y extienda la pluma aproximadamente 8 pies.

2. Levante la parte delantera de la sección TEL 4 de la pluma hasta eliminar el peso de las almohadillas inferiores en las secciones TEL N.° 3, TEL N.° 2, TEL N.° 1 y base de la pluma.

3. Saque los pernos (dos en cada almohadilla) que sujetan las almohadillas de desgaste inferiores de las secciones TEL N.° 3, TEL N.° 1 y base de la pluma, y retire y sustituya las almohadillas. Instale los pernos, aplique Loctite y apriételos al par de apriete correcto.

4. Marque la posición de las tuercas que fijan los cables de retracción 5/4/3 a la parte delantera inferior de la sección TEL N.° 2 de la pluma. Afloje (para eliminar la tensión) las tuercas de los cables de retracción 5/4/3. Retire los pernos de los retenedores de cable de retracción 5/4/3 y mueva los retenedores y los cables hacia el centro de la pluma.

5. Saque los pernos (dos en cada almohadilla) que sujetan las almohadillas de desgaste inferiores de la sección TEL N.° 2 de la pluma, y retire y sustituya las almohadillas. Instale los pernos, aplique Loctite y apriételos al par de apriete correcto.

CALIBRACIÓN DE LA PLUMA

Almohadillas de desgaste superiores y traseras

1. Con un compás de espesores interiores/exteriores, mida el ancho interior de la sección exterior \(W_i \) a 50 mm (2 pulg) de la placa superior en las partes delantera y trasera de la pluma y anote la medida más pequeña. Si la sección dispone de barras de anclaje de cilindro, efectúe la medición directamente delante de esas barras.

2. Las almohadillas de desgaste traseras superiores también actúan como las almohadillas laterales superiores. Estas almohadillas se fijan por medio de retenedores descentrados que se empernan en las placas superiores interiores de la pluma. Se utilizan dos retenedores descentrados diferentes, uno estampado 0.53 y el otro estampado 0.59. Estos números corresponden a la distancia de los agujeros de montaje a la línea central de la pieza. Use una combinación de retenedores de almohadillas de desgaste de 0.53 y 0.50 en la sección interior superior para obtener una separación de 0 mm a 1.5 mm (0.00 a 0.06 pulg) entre estas almohadillas de desgaste \(W_o \) y el ancho interior \(W_i \) de la sección exterior. Estampe los retenedores de almohadillas de desgaste con una D (derecho) o I (izquierdo) y con un 2, 3, 4 o 5 (sección de la pluma) en sus posiciones, como se ilustra. Estampe la placa superior de las secciones de la pluma con una D o I correspondiente a, y en la misma ubicación, que la marca estampada en las placas de montaje de las almohadillas de desgaste, como se ilustra.

Almohadillas de desgaste laterales interiores

1. Con un compás de espesores interiores/exteriores, mida el ancho interior de la sección exterior \(W_i \) en las partes delantera y trasera de la pluma a 76.2 mm (3 pulg) de la placa inferior y anote la medida más pequeña. Si la sección dispone de barras de anclaje de cilindro, efectúe la medición directamente delante de estas barras.

2. Utilice el compás de espesores interiores/exteriores para medir el ancho exterior de la sección interior \(W_o \) en la posición de la almohadilla lateral inferior trasera. Anote la medición más grande.
3. Mida y anote el grosor de las almohadillas de desgaste (twp).

4. Reste el ancho exterior más grande (W_o) de la sección interior y el grosor de las dos almohadillas de desgaste (twp) del ancho interior de la sección exterior (W_i). Añada suplementos según se requiera (cada suplemento mide 0.03 pulg) para ajustar las almohadillas de modo que haya una separación de 0 a 1.5 mm (0.00 a 0.06 pulg) entre las almohadillas de desgaste traseras inferiores de la pluma interior y la parte más angosta de la pluma exterior cuando se instalen los suplementos.

Almohadillas de desgaste traseras inferiores

1. Con una cinta de medir, mida la altura interior de la sección exterior (H_i) en las partes delantera y trasera de la pluma y anote la medida más pequeña. Si la sección dispone de barras de anclaje de cilindro, efectúe la medición directamente delante de estas barras.

2. Con la cinta de medir, mida la altura exterior de la sección interior (H_o) en las posiciones de las almohadillas traseras inferiores. Anote la medición más grande.

3. Mida y anote el grosor de las almohadillas de desgaste (twp).

4. Reste la altura exterior mayor (H_o) de la sección exterior y el grosor de la almohadilla superior y la almohadilla inferior (twp) de la altura interior de la sección exterior (H_i). Añada suplementos según se requiera (cada suplemento mide 0.06 pulg de grosor) para ajustar las almohadillas de modo que haya una separación de 1.5 mm a 3 mm (0.06 a 0.12 pulg) entre la parte más ancha de la pluma interior y la parte más angosta de la pluma exterior con los suplementos y almohadillas instalados.
1. Después de haber desarmado el cilindro hidráulico de la pluma, colóquelo sobre soportes y coloque la bandeja de recolectora debajo de la válvula de retención.

2. Utilice potencia hidráulica (suministrada por una unidad portátil o por un circuito de la grúa) para extender el cilindro hidráulico a aprox. 609.6 mm (24 pulg). Si las secciones no se mueven de modo uniforme, retenga la sección en movimiento para permitir una extensión uni-
Armado del cilindro

1. Reemplace las piezas de la guarnición del cilindro según se requiera en el conjunto del cilindro de la sección de base. Consulte las páginas de piezas para obtener el número de pieza del juego de guarnición de repuesto. Si se calientan los sellos en forma de U en aceite a 60°C (140°F) se facilita el armado.

2. Instale el prensaestopas y el tubo de tope en el conjunto del eje del cilindro de la sección de base.

3. Instale el anillo “O” y los anillos de respaldo en el diámetro interior del embolo de la sección de base y enrósquel en el conjunto del eje del cilindro de la sección de base hasta que quede ajustado, verificando que el agujero contrataladrado del embolo quede asentado debidamente sobre el conjunto del eje. Procure no dañar el anillo “O” al instalar el embolo. Utilizando una llave ajustable de tamaño adecuado, apriete el embolo en el conjunto del eje del cilindro de la sección de base a 813 Nm (600 lb pie).

4. Instale el tornillo de fijación en el embolo utilizando Loc-tite™ tipo 243 de acuerdo con las recomendaciones y apriete a 8 lb pie. Aplique Loc-tite e instale el segundo tornillo de fijación encima del primer tornillo de fijación y apriete a 10.8 Nm (8 lb pie).

5. Reemplace las piezas de la guarnición del cilindro según se requiera en el conjunto del cilindro de la sección TEL N.° 1. Consulte las páginas de piezas para obtener el número de pieza del juego de guarnición de repuesto.

6. Instale el prensaestopas y el tubo de tope en el conjunto del eje del cilindro de la sección TEL N.° 1.

7. Instale el anillo “O” y los anillos de respaldo en el diámetro exterior del embolo de la sección TEL N.° 1 y enrósquel en el conjunto del eje del cilindro de la sección TEL N.° 1 hasta que quede ajustado, verificando que el agujero contrataladrado del embolo quede asentado debidamente sobre el conjunto del eje. Procure no dañar el anillo “O” al instalar el embolo. Utilizando una llave ajustable de tamaño adecuado, apriete el embolo en el conjunto del eje del cilindro de la sección TEL N.° 1 a 813 Nm (600 lb pie).

8. Instale un tornillo de fijación en el embolo usando pasta Loc-tite tipo 243 siguiendo las recomendaciones de Loc-tite y apriételo a 10.8 Nm (8 lb pie). Aplique pasta Loc-tite™ al segundo tornillo de fijación, instálelo encima del primer tornillo de fijación y apriételo a 8 lb pie.

9. Instale el conjunto del cilindro de la sección TEL N.° 1 con el tubo de tope del embolo y el prensaestopas dentro del tubo de la sección TEL N.° 2 hasta acercarlo a menos de 609 mm (24 pulg) de la posición completamente armada. Cuidadosamente inicie la instalación del prensaestopas en el tubo de la sección TEL N.° 2 y apriete hasta 1/4 pulg de estar apretado. Utilice una llave ajustable de tamaño adecuado para apretar el prensaestopas a 813 Nm (600 lb pie).

10. Aplique un cordón de 4.77 mm (3/16 pulg) de ancho de pasta Loc-tite 518 a las roscas exteriores del prensaestopas y termine la instalación.
11. Instale el conjunto del cilindro de la sección de base con el tubo de tope del émbolo y el prensaestopas dentro del tubo de la sección TEL N.° 1 hasta acercarlo a menos de 609 mm (24 pulg) de la posición completamente armada. Cuidadosamente inicie la instalación del prensaestopas en la sección TEL N.° 1 y apriete hasta 1/4 pulg de estar apretado.

12. Aplique un cordón de 4.77 mm (3/16 pulg) de ancho de pasta Loctite™ 518 a las rosca exteriores del prensaestopas y termine la instalación. Utilice una llave ajustable de tamaño adecuado para apretar el prensaestopas a 813 Nm (600 lb pie).

13. Instale la válvula de retención en la placa de tope del eje de la sección de base. Accione el cilindro por un ciclo completo de trabajo para verificar que no tenga fugas. Aplique aceite al conjunto del eje de la sección de base a través de la válvula de retención. Sostenga las secciones TEL N.° 1 y TEL N.° 2 al extenderlas y retraerlas.

PLUMÍN DE LA PLUMA

Ajuste de la escuadra de almacenamiento del plumín

Es extremadamente importante para la seguridad del operador de la grúa y para todos los que trabajen alrededor de la grúa que la extensión del plumín de la pluma se asegure debidamente a la escuadra de almacenamiento del plumín (Figura 4-39) y a la punta de la pluma principal.

Use el procedimiento siguiente para hacer los ajustes a la escuadra de almacenamiento del plumín.

Antes de iniciar este procedimiento, lea y entienda la siguiente etiqueta de PELIGRO (Figura 4-35). También revise y entienda la Sección 4 del manual del operador para las instrucciones de seguridad, almacenamiento y despliegue del plumín.

1. Use pernos para fijar sin apretar los dos conjuntos de orejetas con suplementos y barras, de la manera ilustrada en la Figura 4-36, al costado de la primera sección de la pluma.

2. Fije el conjunto del gancho con pernos, pero sin apretarlos, al costado de la primera sección de la pluma (Figura 4-37).
3. Extienda la pluma aproximadamente un pie.

4. Utilice una eslinga para elevar el conjunto del plumín, alinéelo y fíjelo con pasador a la cabeza de poleas de la pluma (Figura 4-38).

5. Con el plumín fijado con pasador a la cabeza de la polea, gire el plumín paralelo a la pluma y asegúrelo a la escuadra de almacenamiento del plumín (Figura 4-39).

6. Retraiga la pluma lentamente hasta que las orejetas del plumín se encuentren dentro de 12.7 mm (0.50 pulg) de los conjuntos de orejetas de la primera sección de la pluma. Observe la alineación vertical de las orejetas del plumín y de los conjuntos de orejetas y añada o retire suplementos hasta que el plumín quede soportado por sus orejetas. El plumín típicamente reposa únicamente sobre el soporte superior (Figura 4-40).

7. Observe la alineación horizontal de la ranura de los conjuntos de orejetas y el pasador de almacenamiento del plumín. El ajuste horizontal de las orejetas de almacenamiento se obtiene por medio de los agujeros grandes para perno en las orejetas. Desplace las orejetas hacia adentro o hacia afuera para obtener la alineación correcta. Coloque la orejeta superior de modo que sostenga la parte superior del plumín hacia la pluma y la inferior para que sostenga la parte inferior del plumín alejándola de la parte inferior de la pluma; vea la Figura 4-41.

8. Retraiga la pluma lentamente. Observe la alineación del gancho de almacenamiento y la traba mientras se retrae la pluma (Figura 4-42).
Cuando la pluma está completamente retraída, los pasadores de almacenamiento del plumín deben tocar fondo de modo seguro en los conjuntos de orejetas (Figura 4-43).

Si los pasadores de almacenamiento no están debidamente alineados, será necesario colocar el gancho y las barras delanteras en las posiciones para impedir que el plumín se deslice hacia adelante o hacia atrás al elevar la pluma.

Intente sacar los pasadores del plumín. Si los pasadores están demasiado apretados, será necesario ajustar el gancho de almacenamiento o las barras delanteras.

Apriete todos los pernos a su par de apriete especificado (vea la tabla en la sección Servicio y mantenimiento). Instale el pasador de almacenamiento en el conjunto de traba y extraiga los pasadores del plumín.

Adición de aceite
1. Con el caballete completamente bajado y el émbolo metido, coloque el gato en su posición vertical y retire el tapón de llenado de aceite. (4).
2. Llene el gato con aceite hasta que el nivel quede a ras con el agujero del tapón de llenado.

Cambio del aceite
1. Para un mejor rendimiento y una vida útil prolongada, cambie todo el suministro de aceite al menos una vez por año.

Servicio y mantenimiento del gato del plumín

Importante: Utilice únicamente aceite para gatos hidráulicos, aceite de transmisión o aceite de turbinas de grado adecuado. Evite combinar aceites de tipos diferentes. No utilice fluido de frenos, alcohol, glicerina, aceite detergente para motor ni aceite sucio. Un fluido de tipo inadecuado podría causar daños internos graves al gato y dejarlo inoperante.

Vea la Figura 4-44 para los procedimientos siguientes.

Quite el gato (1) del plumín de la pluma (2) retirando los tres pernos y las arandelas planas (3).
2. Para vaciar el aceite, retire el tapón de llenado (4).
3. Coloque el gato sobre un costado y permita que el aceite se vacie en un recipiente adecuado. El aceite se vaciará lentamente porque el aire debe entrar a medida que se vacía el aceite.
4. Evite que tierra y materias extrañas entren al sistema.
5. Reemplace con aceite apropiado según lo recomendado por el fabricante del gato.

Lubricación
Añada aceite lubricante del tipo adecuado a todas las secciones giratorias cada tres meses.

Prevención de la oxidación
Revise el ariete cada tres meses en busca de señales de herrumbre o corrosión. Limpie según sea necesario y frote las superficies con un trapo empapado con aceite.

NOTA: Cuando no están en uso, siempre deje el caballete y el ariete completamente bajados.

Tabla 4-3. Localización de averías

<table>
<thead>
<tr>
<th>Síntoma</th>
<th>Causas posibles</th>
<th>Acción correctiva</th>
</tr>
</thead>
</table>
| No es posible elevar cargas. | 1. No hay aceite en el sistema
2. La válvula de liberación no se ha cerrado | 1. Añada aceite al depósito a través del agujero de llenado.
2. Gire la manija en sentido horario hasta apretarla ajustadamente. |
| Eleva la cara solo parcialmente.| Bajo nivel de aceite | Añada aceite al depósito a través del agujero de llenado. |
| La carga se levanta pero no se sostiene. | 1. Una o más de las válvulas siguientes tienen fugas:
a. Válvula de aspiración
b. Válvula de entrega
c. Válvula de liberación
2. Desgaste o avería de las guarniciones | 1. Reemplace el gato.
2. Reemplace el gato |
| El gato no baja. | Válvula de liberación pegada, probablemente por la presencia de tierra o materias extrañas | 1. Transfiera la carga, luego cambie el aceite sucio.
2. Enjuague el depósito de aceite con queroseno. |
| Elevación deficiente | 1. Aceite sucio
2. Purgue el aire del sistema. |
| Acción de bombeo deficiente | Desgaste o avería del sello de aceite de la unidad de la bomba | Reemplace el gato. |
SECCIÓN 5
MALACATE

CONTENIDO DE LA SECCIÓN

<table>
<thead>
<tr>
<th>Describepción</th>
<th>5-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mantenimiento</td>
<td>5-1</td>
</tr>
<tr>
<td>Procedimiento de calentamiento</td>
<td>5-1</td>
</tr>
<tr>
<td>Retiro del malacate</td>
<td>5-2</td>
</tr>
<tr>
<td>Instalación del malacate</td>
<td>5-2</td>
</tr>
<tr>
<td>Sistema de indicador de rotación del malacate (HRI)</td>
<td>5-4</td>
</tr>
<tr>
<td>Indicador de rotación del tambor</td>
<td>5-5</td>
</tr>
<tr>
<td>Retiro</td>
<td>5-5</td>
</tr>
<tr>
<td>Instalación</td>
<td>5-6</td>
</tr>
<tr>
<td>Programación del indicador de vueltas mínimas</td>
<td>5-6</td>
</tr>
<tr>
<td>Modo de envío (serie A solamente)</td>
<td>5-7</td>
</tr>
<tr>
<td>Localización de averías</td>
<td>5-8</td>
</tr>
<tr>
<td>Para la serie “A”</td>
<td>5-8</td>
</tr>
<tr>
<td>Instrucciones de reposición del disyuntor para la serie “B”</td>
<td>5-8</td>
</tr>
<tr>
<td>Reparación del malacate</td>
<td>5-8</td>
</tr>
<tr>
<td>Desarmado</td>
<td>5-8</td>
</tr>
<tr>
<td>Armado</td>
<td>5-9</td>
</tr>
<tr>
<td>Freno</td>
<td>5-12</td>
</tr>
<tr>
<td>Grupo de planetarios</td>
<td>5-13</td>
</tr>
<tr>
<td>Motor</td>
<td>5-13</td>
</tr>
<tr>
<td>Localización de averías</td>
<td>5-14</td>
</tr>
</tbody>
</table>

DESCRIPCIÓN

El malacate de la NBT40-1 se compone de una válvula de control del motor, un motor hidráulico de caudal seleccionable (dos velocidades), un freno de discos múltiples y un par de grupos de engranajes planetarios.

El freno de discos múltiples se aplica por resorte y se libera hidráulicamente por medio de una lumbrera en la caja del freno. Un embrague de sobremarcha permite levantar la carga con el malacate a la vez que se retiene la carga hasta que haya presión suficiente para soltar el freno cuando se baja la carga con el malacate.

La Figura 5-1 muestra los malacates principal y auxiliar, la cubierta del malacate y el motor hidráulico. Algunos modelos NBT40-1 están configurados solamente con malacate principal y otros con malacates principal y auxiliar.

Los siguientes procedimientos de retiro, instalación, desarmado, armado y ajustes en esta sección corresponden tanto al malacate principal como al auxiliar.

MANTENIMIENTO

Inspeccione el malacate diariamente en busca de fugas de aceite, pernos sueltos y desgaste del cable del malacate (consulte la Sección 8). Inspeccione el malacate desde la plataforma de la grúa. No se pare sobre la torreta.

PELIGRO

Bajo ninguna circunstancia se deberá permitir que personas trabajen a alturas elevadas sin utilizar medios de protección contra caídas, según lo exijan los reglamentos locales, estatales o federales.

Procedimiento de calentamiento

Se recomienda efectuar un procedimiento de calentamiento cada vez que se arranque la máquina. Es esencial efectuarlo si la temperatura ambiente es menor que 4°C (40°F). Haga funcionar el motor diésel de la grúa a ralentí con la palanca de control del malacate en punto muerto y deje pasar tiempo suficiente para que el sistema hidráulico se caliente. Accione el malacate a velocidades bajas, en avance y retroceso, varias veces para cebar todas las líneas con aceite hidráulico caliente y para hacer circular el lubricante a través de los mecanismos de engranajes planetarios.
Retiro del malacate

PRECAUCIÓN
El peso combinado del malacate y los 137 m (450 pies) de cable es de aproximadamente 467 kg (1030 lb).

El siguiente procedimiento de retiro corresponde a ambos malacates, el principal y el auxiliar. Vea la Figura 5-1 para el procedimiento siguiente.

1. Quite la cubierta del malacate (1) y la tornillería de fijación (2 y 3).
2. Retire el cable (8) del tambor del malacate.
3. Rotule y desconecte las mangueras y los tubos hidráulicos del malacate (17, 18 y 23). Tape todas las aberturas hidráulicas.
4. Conecte un dispositivo de levante al malacate (4 o 7).
 Aplique tensión al cable del dispositivo de levante para evitar que el malacate se caiga al quitar la tornillería.
5. Quite los pernos de montaje del malacate, las arandelas y las tuercas (5, 6, 12 y 13) del malacate.
6. Retire el malacate (4 o 7) de la grúa usando el dispositivo de levante.

Mangueras hidráulicas
Inspeccione las mangueras y los tubos hidráulicos del malacate (17, 18 y 23) en busca de grietas o daños que puedan causar fugas. Sustituya las mangueras según se necesite.

Instalación del malacate

El siguiente procedimiento de instalación corresponde a ambos malacates, el principal y el auxiliar. Vea la Figura 5-1 para el procedimiento siguiente.

1. Conecte un dispositivo de levante al malacate (4 o 7).
2. Levante el malacate con un dispositivo de levante para colocarlo sobre la torreta.
3. Instale los pernos de montaje, las arandelas y las tuercas (5, 6, 12 y 13).
4. Retire el dispositivo de levante del malacate.
5. Instale las mangueras y los tubos hidráulicos (17, 18 y 23) según las etiquetas colocadas durante el retiro.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cubierta</td>
<td>9</td>
<td>Codo</td>
<td>17</td>
<td>Tubo, inferior</td>
</tr>
<tr>
<td>2</td>
<td>Arandela plana</td>
<td>10</td>
<td>Unión</td>
<td>18</td>
<td>Tubo, elevación</td>
</tr>
<tr>
<td>3</td>
<td>Perno de cabeza hexagonal</td>
<td>11</td>
<td>Arandela</td>
<td>19</td>
<td>Adaptador</td>
</tr>
<tr>
<td>4</td>
<td>Malacate principal</td>
<td>12</td>
<td>Arandela</td>
<td>20</td>
<td>Motor</td>
</tr>
<tr>
<td>5</td>
<td>Arandela (8 puntos)</td>
<td>13</td>
<td>Tuerca</td>
<td>21</td>
<td>Codo, 90</td>
</tr>
<tr>
<td>6</td>
<td>Perno de cabeza hexagonal (8 puntos)</td>
<td>14</td>
<td>Pluma</td>
<td>22</td>
<td>Freno</td>
</tr>
<tr>
<td>7</td>
<td>Malacate auxiliar</td>
<td>15</td>
<td>Arandela</td>
<td>23</td>
<td>Manguera de vaciado de caja</td>
</tr>
<tr>
<td>8</td>
<td>Cable, 5/8</td>
<td>16</td>
<td>Unión</td>
<td>24</td>
<td>Codo, 90</td>
</tr>
</tbody>
</table>

FIGURA 5-1
Sistema de indicador de rotación del malacate (HRI)

El sistema de HRI consiste en una pantalla de LED que indica el sentido en que giran los malacates, los interruptores de presión que monitorean la presión piloto hidráulica y un módulo de control montado en la cabina. El sistema HRI también es un sistema accionado eléctricamente que proporciona un indicador táctil de la rotación de tambor al operador para informarle si el tambor está girando y a qué velocidad lo hace, aun bajo las condiciones más capaces de distraerle. (Vea “Indicador de rotación del tambor” en la página 5-5).

Interruptores de presión

Los interruptores de presión están ubicados en la válvula de control principal (vea la Figura 5-2). Los contactos de los interruptores se cierran a 5.17 bar (75 psi).

Pantalla de HRI

La pantalla de HRI (1, Figura 5-3) está ubicada en el tablero superior delantero.

Para sustituir la pantalla, retire el tablero superior. Desconecte el conector eléctrico y haga palanca en la pantalla para retirarla del tablero. Limpie con alcohol isopropílico la zona del tablero en la que la pantalla estaba fijada, retire el papel de la parte adhesiva posterior de la pantalla nueva y presione la pantalla contra el tablero para adherirla. Conecte los alambres a la pantalla. Vuelva a instalar el tablero y fíjelo con la tornillería.

Módulo de control del HRI

El módulo de control de HRI (1, Figura 5-4) está ubicado en el tablero de fusibles y relés, detrás del asiento del conductor en la cabina.
Para sustituir el módulo de control, marque y desconecte los alambres del módulo (vea la Figura 5-5). El módulo está montado en el tabique con cinta adhesiva de doble lado. Para retirar el módulo, haga palanca en el tabique para extraerlo. Elimine cualquier residuo de cinta del tabique. Fije el módulo de repuesto en el tabique con cinta de espuma. Conecte los alambres según se marcaron durante el retiro.

El transductor del DRI y el indicador de vueltas mínimas (MWI) están programados para notificar al operador cuando restan tres vueltas de cable o cable de elevación sintético en el tambor del malacate.

El HMS está disponible con dos sistemas, serie “A” y serie “B”. El HMS está disponible con un CAN J1939 (serie “B”), que permite que el dispositivo interactúe con el sistema Indicador de capacidad nominal (RCL).

Las unidades de la serie “A” se pueden distinguir por un solo cable de conexión en la HMS, ubicado en el lado izquierdo del malacate. Las unidades de la serie “B” tienen una segunda conexión (CAN J1939) junto con un circuito de protección integrado, que actúa como disyuntor, en las salidas del indicador de vueltas mínimas (MWI) e indicador de rotación del tambor (DRI) (vibrador).

Retiro

1. Suelte el collar del conector y desenchufe el cable del DRI (1, Figura 5-6).
2. Saque los dos tornillos retenedores (2).
3. Retire la unidad de DRI del malacate.
4. Afloje el tornillo de fijación y retire el conjunto de eje del MWI.

INDICADOR DE ROTACIÓN DEL TAMBORE

El Indicador de rotación del tambor (DRI) y el indicador de vueltas mínimas (MWI) se encuentran integrados en un Sistema de monitoreo de malacate (HMS) en el lado izquierdo del malacate y transmite una señal de rotación a un solenoide (vibrador) ubicado en la palanca de control del malacate, en el asiento del operator.
Instalación

Para instalar el DRI, utilice el procedimiento siguiente:

1. Instale el conjunto de eje en el MWI.
2. Aplique sellante de silicona en el tornillo de fijación para evitar que el aceite llegue a los componentes electrónicos.
3. Apriete el tornillo de fijación.
4. Inserte el DRI dentro del tambor. Gire el DRI (1, Figura 5-7) de modo que su eje de DRI (2) se enganche con el mando del interior del tambor.
5. Meta el DRI en el tambor de modo que la muesca quede alineada con el respiradero (3, Figura 5-6).
6. Fije el DRI con los tornillos retenedores (2, Figura 5-6).
7. Suelte el tornillo de fijación (1, Figura 5-8) del costado de la brida del DRI.
8. Utilice los agujeros para llave ajustable (2, Figura 5-8) para girar el DRI de modo que el conector (3) quede orientado hacia abajo.
9. Apriete el tornillo de fijación (1, Figura 5-8) después de haber colocado el DRI en la posición deseada.
10. Enchufe el cable del DRI y apriete el collar para asegurar el conector.

Programación del indicador de vueltas mínimas

Es necesario programar el indicador de vueltas (MWI) para advertir al operador cuando restan tres vueltas de cable o cable de elevación sintético. Para programar el MWI, tiene que hacer lo siguiente:

1. Ponga en funcionamiento el malacate hasta el primer punto de ajuste, tres vueltas del cable o cable sintético. Esto desactiva la señal de la alarma.
2. Desconecte la alimentación del MWI desconectando el cable del DRI (2, Figura 5-9).
3. Retire el tornillo de la cubierta del botón de programación del Sistema de monitoreo del malacate (HMS) (1, Figura 5-9) en el DRI.
4. Presione y mantenga presionado suavemente el botón de programación (3, Figura 5-9) y retorne la alimentación al MWI volviendo a conectar el cable del DRI.

NOTA: Utilice una llave Allen u otra herramienta pequeña con un extremo plano contundente aproximadamente 1.5 mm o (1/16 pulg) de ancho y por lo menos 76 mm (3 pulg) de largo. El uso de una herramienta con punta o de hoja puntiaguda puede originar el ajuste defectuoso o daños en el HMS. El exceso de fuerza puede dañar el funcionamiento del HMS.

5. Mantenga presionado el botón de programación durante al menos 2 segundos, pero menos de 15 segundos después de aplicar la alimentación y libere.

NOTA: Mantener presionado el botón durante más de 15 segundos lo pone el HMS en modo de envío en las unidades de la serie A. (Vea la Figura 5-9) Vea Modo de envío para obtener información adicional.

6. Accione el malacate hasta el segundo punto de ajuste.

NOTA: Se recomienda hacer la transición a la segunda capa como el segundo punto de ajuste.

7. Suavemente presione y mantenga presionado el botón de programación entre 1 y 2 segundos, luego libere.

8. Vuelva a colocar el tornillo de programación del MWI/HMS. Apriete a 7 pulg-lb.

NOTA: Si no se vuelve a instalar el tornillo de programación (1, Figura 5-9), el funcionamiento del MWI podría verse afectado.

9. La rutina de configuración del MWI se completó.

Modo de envío (serie A solamente)

Si el botón de programación se mantiene presionado por más de 15 segundos, el HMS entrará en el “Modo de envío (serie A solamente)”. El HMS rápidamente pulsa la salida de “Advertencia” que indica que el HMS está entrando o saliendo del “Modo de envío”. Mientras está en el “Modo de envío”, el HMS pulsará la salida de “Advertencia” dos veces con una pausa de 30 segundos.

El modo de envío permite que OEM establezca los puntos de ajuste en el cable antes de enviarlo a un sitio de trabajo. Esto evita la necesidad de recalibrar los puntos de ajuste cuando el malacate se instala en la máquina.

NOTA: La indicación de rotación del tambor, comúnmente una palanca de vibrador, permanece en funcionamiento mientras el HMS está en el modo de envío.
Para usar el Modo de envío:

1. Instale el cable en el tambor. Consulte el manual del malacate apropiado para más información.
2. Vea “Programación del indicador de vueltas mínimas” en la página 5-6 para establecer los puntos de extremo.
3. Retire el tornillo de la cubierta del botón de programación (1, Figura 5-9).
4. Mantenga oprimido suavemente el botón de programación por lo menos 15 segundos. El HMS rápidamente pulsa la salida de “Advertencia” para confirmar que el HMS está en “Modo de envío”. Los punto de ajuste permanecen guardados en el HMS.

NOTA: El exceso de fuerza puede dañar el botón de programación y afectar la operación de MWI/HMS.
5. Esto permite que el malacate gire sin alterar la cuenta ni los puntos de ajuste.
6. Cuando el malacate se instala en la máquina y el cable se instala al mismo largo que la configuración original, desconecte la tubería (22) conectada a la caja de freno (21). Retire el motor (42) del malacate quitando los cuatro pernos (47). Consulte “Motor” en la página 5-13 para el procedimiento de desarmado del motor y de la válvula equilibradora.

4. Quite el subconjunto de freno del malacate sacando los ocho pernos (9) que sujetan la caja del freno a la placa lateral (27). Vuelva a instalar dos de estos pernos en los dos agujeros roscados adicionales y apriételos de modo uniforme hasta que la caja del freno quede suelta de la placa lateral. Vea “Freno” en la página 5-12 para la reparación del freno.

7. El HMS ahora está listo para uso.

LOCALIZACIÓN DE AVERÍAS

Para la serie “A”

Revise el fusible en línea que se usa para proteger la línea del vibrador.

Instrucciones de reposición del disyuntor para la serie “B”

Las unidades de la serie “B” tienen un circuito de protección integrado que actúa como un disyuntor en las salidas del MWI y DRI. Si el disyuntor se acciona, desconecte la alimentación (apague el interruptor con llave o desconecte el cable) e inspeccione los dispositivos de carga (palancas de vibrador).

REPARACIÓN DEL MALACATE

Desarmado

Consulte la Figura 5-10 y la lista de piezas del malacate en la página 5-11 para ayudarse a cómo desarmar el malacate.

1. Vacíe el aceite del mecanismo y secciones de freno según las instrucciones en el manual del operador.
2. Apoye el malacate sobre su extremo, con el motor hacia arriba.
3. Desconecte la tubería (22) conectada a la caja de freno (21). Retire el motor (42) del malacate quitando los cuatro pernos (47). Consulte “Motor” en la página 5-13 para el procedimiento de desarmado del motor y de la válvula equilibradora.
4. Quite el subconjunto de freno del malacate sacando los ocho pernos (9) que sujetan la caja del freno a la placa lateral (27). Vuelva a instalar dos de estos pernos en los dos agujeros roscados adicionales y apriételos de modo uniforme hasta que la caja del freno quede suelta de la placa lateral. Vea “Freno” en la página 5-12 para la reparación del freno.

5. Quite la placa lateral (27) retirando los doce pernos (1, 57 y 87) y los dos tornillos (58).

6. Retire el anillo retenedor (52). Levante la corona dentada (25) para quitarla del tambor (5). Retire los cinco pasadores (51) a medida que se levanta la corona dentada para quitarla. Inspeccione los dientes de la corona dentada en busca de desgaste excesivo y reemplace según sea necesario. Inspeccione el cojinete de bola (28) en busca de picaduras y melladuras y, de ser necesario, sustituya el cojinete y el sello de aceite (7-6).

7. Retire la arandela de empuje (6) y el engranaje solar de entrada (8) del grupo de planetarios de entrada (36). Inspeccione en busca de daños y reemplace de ser necesario.

8. Retire el grupo de planetarios de entrada (36) del tambor (5). Inspecciónelo en busca de daño.

9. Quite la arandela de empuje (6) y el engranaje solar de salida (16). Inspeccione en busca de daños y reemplace de ser necesario.

10. Retire el grupo de planetarios de salida (4) del tambor (5). Inspeccione el grupo de planetarios de salida en busca de desgaste y repare según sea necesario. Consulte “Grupo de planetarios” en la página 5-13 para el desarmado y la reparación.

11. Retire el tambor (5) levantándolo recto hacia arriba para quitarlo del eje de salida (32). Inspeccione el cojinete de bola (28) en busca de melladuras y picaduras y, de ser necesario, sustituya el cojinete y el sello de aceite (7-6).

12. Inspeccione el anillo retenedor (35) del eje de salida (32) para asegurarse de que aún esté en la ranura y que no esté doblado. Reemplace según sea necesario.

13. Inspeccione el eje de salida (32) en busca de desgaste y daños y, de ser necesario, retírelo de la placa lateral (29) sacando ocho pernos (88).
Armado

Vea la Figura 5-10 y la lista de piezas del malacate en la página 5-11 para ayuda sobre cómo armar el malacate.

1. Limpie todas las piezas a fondo. Reemplace las que tengan desgaste o daños.

2. Inspeccione el tambor (5) para verificar su integridad estructural y los dientes del engranaje en busca de desgaste excesivo y reemplace de ser necesario.

3. Conecte el eje de salida (32) a la placa lateral (29) con ocho pernos (88), asegurándose que el respiradero (30) esté correctamente orientado, luego apriételos a la especificación. Vea “Sujetadores y valores de apriete” en la página 1-7.

4. Instale el anillo retenedor (35) en el eje de salida (32).

5. Conecte la base (56) y la varilla de soporte (2) a la placa lateral (29) con doce pernos (1, 57 y 87) y dos tuercas (58). Apriete de acuerdo a la especificación (consulte “Sujetadores y valores de apriete” en la página 1-7).

6. De ser necesario, instale un cojinete de bola (28) nuevo y sello de aceite (7-6) en el tambor.

7. Coloque la unidad sobre el suelo de manera que la varilla de soporte (2) y la base (56) estén orientadas hacia arriba. Coloque el tambor (5) en el eje de salida (32). Tenga cuidado de no dañar el sello de aceite (7-6) mientras asienta el tambor en el cojinete de bola (28).

8. Instale el grupo de planetarios de salida (4) en el tambor (5), asegurándose que esté instalado correctamente en el eje de salida (32).

9. Aplique una capa ligera de grasa en la arandela de empuje (6) para mantenerla en su lugar e instale el grupo de planetarios de entrada (36). Inserte el engranaje solar de entrada (8).

10. Instale el grupo de planetarios de entrada (36) en el tambor (5), asegurándose que esté instalado correctamente en el engranaje solar de salida (16).

11. Aplique una capa ligera de grasa en la arandela de empuje (6) para mantenerla en su lugar e instale el grupo de planetarios de entrada (36). Inserte el engranaje solar de entrada (8).

12. Instale un anillo “O” nuevo (7-4) y, de ser necesario, un cojinete de bola (28) y sello de aceite (7-6) nuevos en la corona dentada (25). Aplique una capa ligera de grasa en el anillo “O” y el sello e instale la corona dentada en el tambor, asegurándose que los agujeros de pasadores están alineados.

13. Instale cinco pasadores (51) entre la corona dentada (25) y el tambor (5).

14. Instale el anillo retenedor (52) en el tambor.

15. Coloque la placa lateral (27) en la parte superior de la base (56) y la varilla de soporte (2). Fije la placa lateral con doce pernos (1, 57 y 87) y dos tuercas (58). Apriete de acuerdo a la especificación (consulte “Sujetadores y valores de apriete” en la página 1-7).

16. Instale el subconjunto de freno en la placa lateral (27), asegurándose que el piloto de la caja de frenos se alinea con el cojinete de bola (28) y sello de aceite (7-6) en la corona dentada (25) y que los agujeros para el motor tienen la orientación correcta.

NOTA: Asegúrese de que los tapones de nivel y con respiradero de la cubierta estén orientados correctamente.

17. Instale ocho pernos (88) y apriételos al valor especificado (consulte “Sujetadores y valores de apriete” en la página 1-7).

18. Instale un anillo “O” nuevo (7-5) en la superficie del motor y vuelva a instalar el motor (42). Instale cuatro pernos (47) y apriételos al valor especificado (consulte “Sujetadores y valores de apriete” en la página 1-7).

19. Vuelva a conectar la tubería (22) a la caja del freno (21).

20. Llene el mecanismo y la sección de freno con la cantidad y tipo apropiados de lubricantes según las instrucciones en “Aceite recomendado” (consulte “Aceite de freno del malacate” en la página 8-9).
FIGURA 5-10
Lista de piezas del malacate

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
<td>Perno</td>
<td>15</td>
<td>2</td>
<td>Anillo retenedor</td>
<td>43</td>
<td>1</td>
<td>Adaptador recto</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Varilla de soporte</td>
<td>16</td>
<td>1</td>
<td>Engranaje solar de salida</td>
<td>44</td>
<td>1</td>
<td>Adaptador en T</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Bloque de válvula</td>
<td>17</td>
<td>2</td>
<td>Buje de empuje</td>
<td>45</td>
<td>1</td>
<td>Adaptador de 90 grados</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Grupo de planetarios de salida</td>
<td>18</td>
<td>7</td>
<td>Disco de fricción</td>
<td>46</td>
<td>1</td>
<td>Adaptador de 90 grados</td>
</tr>
<tr>
<td>4-1</td>
<td>1</td>
<td>Vehículo</td>
<td>19</td>
<td>8</td>
<td>Plato de estator</td>
<td>47</td>
<td>4</td>
<td>Perno</td>
</tr>
<tr>
<td>4-2</td>
<td>3</td>
<td>Engranaje planetario</td>
<td>20</td>
<td>1</td>
<td>Cubierta de freno</td>
<td>50</td>
<td>1</td>
<td>Brida</td>
</tr>
<tr>
<td>4-3</td>
<td>3</td>
<td>Pasador de planetario</td>
<td>21</td>
<td>1</td>
<td>Caja de freno</td>
<td>51</td>
<td>1</td>
<td>Pasador</td>
</tr>
<tr>
<td>4-4</td>
<td>3</td>
<td>Anillo retenedor</td>
<td>22</td>
<td>1</td>
<td>Tubo</td>
<td>52</td>
<td>5</td>
<td>Anillo retenedor</td>
</tr>
<tr>
<td>4-5</td>
<td>1</td>
<td>Placa</td>
<td>24</td>
<td>12</td>
<td>Resorte de freno</td>
<td>54</td>
<td>1</td>
<td>Unidad de HMS</td>
</tr>
<tr>
<td>4-6</td>
<td>6</td>
<td>Cojinete</td>
<td>25</td>
<td>1</td>
<td>Corona dentada</td>
<td>56</td>
<td>1</td>
<td>Base</td>
</tr>
<tr>
<td>4-7</td>
<td>3</td>
<td>Espaciador</td>
<td>27</td>
<td>1</td>
<td>Placa lateral</td>
<td>57</td>
<td>4</td>
<td>Perno</td>
</tr>
<tr>
<td>4-8</td>
<td>6</td>
<td>Pista</td>
<td>28</td>
<td>2</td>
<td>Cojinete de bola</td>
<td>58</td>
<td>4</td>
<td>Tuerca</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Tambor</td>
<td>29</td>
<td>1</td>
<td>Placa lateral</td>
<td>63</td>
<td>2</td>
<td>Tornillo</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>Arandela de empuje</td>
<td>30</td>
<td>2</td>
<td>Respiradero</td>
<td>64</td>
<td>2</td>
<td>Conjunto de cables</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Juego de sellos</td>
<td>31</td>
<td>4</td>
<td>Perno</td>
<td>65</td>
<td>1</td>
<td>Empacador de cable</td>
</tr>
<tr>
<td>7-1</td>
<td>1</td>
<td>Anillo “O”</td>
<td>32</td>
<td>1</td>
<td>Eje de salida</td>
<td>65-1</td>
<td>2</td>
<td>Cojinete</td>
</tr>
<tr>
<td>7-2</td>
<td>2</td>
<td>Anillo “O”</td>
<td>33</td>
<td>1</td>
<td>Tapón</td>
<td>65-2</td>
<td>2</td>
<td>Brazo</td>
</tr>
<tr>
<td>7-3</td>
<td>1</td>
<td>Anillo “O”</td>
<td>34</td>
<td>1</td>
<td>Embrague</td>
<td>65-3</td>
<td>1</td>
<td>Rodillo</td>
</tr>
<tr>
<td>7-4</td>
<td>1</td>
<td>Anillo “O”</td>
<td>35</td>
<td>1</td>
<td>Anillo retenedor</td>
<td>65-4</td>
<td>1</td>
<td>Rodillo</td>
</tr>
<tr>
<td>7-5</td>
<td>1</td>
<td>Anillo “O”</td>
<td>36</td>
<td>1</td>
<td>Grupo de planetarios de entrada</td>
<td>65-5</td>
<td>2</td>
<td>Perno</td>
</tr>
<tr>
<td>7-6</td>
<td>2</td>
<td>Sello de aceite</td>
<td>36-1</td>
<td>1</td>
<td>Vehículo</td>
<td>65-6</td>
<td>2</td>
<td>Cojinete de bola</td>
</tr>
<tr>
<td>7-7</td>
<td>1</td>
<td>Sello de aceite</td>
<td>36-2</td>
<td>3</td>
<td>Engranaje planetario</td>
<td>65-7</td>
<td>1</td>
<td>Resorte, izq.</td>
</tr>
<tr>
<td>7-8</td>
<td>1</td>
<td>Anillo “O”</td>
<td>36-3</td>
<td>3</td>
<td>Pasador de planetario</td>
<td>65-8</td>
<td>1</td>
<td>Resorte, der.</td>
</tr>
<tr>
<td>7-9</td>
<td>1</td>
<td>Anillo “O”</td>
<td>36-4</td>
<td>3</td>
<td>Anillo retenedor</td>
<td>68</td>
<td>1</td>
<td>Válvula equilibradora</td>
</tr>
<tr>
<td>7-10</td>
<td>1</td>
<td>Anillo “O”</td>
<td>36-5</td>
<td>1</td>
<td>Placa</td>
<td>76</td>
<td>1</td>
<td>Tapón</td>
</tr>
<tr>
<td>7-11</td>
<td>1</td>
<td>Anillo “O”</td>
<td>36-6</td>
<td>3</td>
<td>Cojinete de agujas</td>
<td>81</td>
<td>1</td>
<td>Conjunto de cables, DRI/MWI</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Engranaje solar de entrada</td>
<td>36-7</td>
<td>6</td>
<td>Adaptador recto</td>
<td>82</td>
<td>1</td>
<td>Eje impulsor de DRI/MWI</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>Perno</td>
<td>37</td>
<td>4</td>
<td>Perno</td>
<td>84</td>
<td>1</td>
<td>Rodillo</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Ómbolo de freno</td>
<td>38</td>
<td>1</td>
<td>Impulsor de entrada</td>
<td>85</td>
<td>2</td>
<td>Buje</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>Perno</td>
<td>39*</td>
<td>1</td>
<td>Buje</td>
<td>86</td>
<td>1</td>
<td>Conector</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Tubo</td>
<td>40</td>
<td>1</td>
<td>Tapón de tubería</td>
<td>87</td>
<td>4</td>
<td>Perno</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Impulsor del freno</td>
<td>42</td>
<td>1</td>
<td>Motor</td>
<td>88</td>
<td>8</td>
<td>Perno</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>Pista</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Freno
Vea la Figura 5-10 y la lista de piezas del malacate en la página 5-11 para los pasos siguientes de servicio de los frenos.

1. Saque uniformemente los cuatro pernos (11) que suelen la cubierta del freno (20) en su lugar. La tensión del resorte levantará la cubierta cuando se sueltan los pernos. Retire la cubierta de la caja del freno.

2. Quite los resortes de freno (24) del émbolo de freno (10) y revise la altura libre. Cada resorte deberá medir por lo menos 30.5 mm (1.20 pulg) sin aplicarle fuerza alguna.

3. Retire el émbolo del freno (10) instalando dos largos de varilla rosada de 3/8 pulg 16NC en la parte inferior de dos cavidades de resorte. Utilice contratuercas para enroscar las varillas rosadas uniformemente hasta que el émbolo quede libre de la caja. Un método alternativo de retirar el émbolo es usar una unidad de alimentación portátil o aire comprimido de taller para presurizar la cavidad del freno lentamente hasta que el émbolo salga de la cavidad.

4. Retire el conjunto del impulsor del freno/embrague (13-14, 15, 17, 34 y 38) de la caja del freno (21).

5. Retire los platos de estator (19) y los discos de fricción (18) de la caja del freno y revise si tienen desgaste excesivo; reemplácelos de ser necesario. Revise si el plato superior del estator tiene acanaladuras causadas por las herramientas de retiro y púlalo de ser necesario. El grosor de los discos de fricción deberá medir no menos que 1.40 mm (0.055 pulg) y el de los platos de estator deberá medir no menos que 1.63 mm (0.064 pulg).

6. De ser necesario, con un alambre con gancho o palanca, retire el sello de aceite (7-7) de la caja del freno.

7. Examine el buje (39) de la caja del freno en busca de desgaste y, si está desgastado, reemplácelo.

8. Si se retira la caja del freno (21) del malacate, examine el muñón de la caja del freno donde se instala el sello (7-6) en busca de desgaste. Si tiene desgaste significativo, sustituya la caja del freno.

9. Desarme cuidadosamente el impulsor del freno/embrague y tome nota de la orientación de las marcas en el embrague (34). Es necesario armar el conjunto del embrague con las marcas orientadas correctamente para que el malacate funcione adecuadamente. Insccione la superficie de los impulsores de entrada y frenos (13 y 38) donde corre el embrague (34). Si hay picaduras o roturas en los impulsores, será necesario reemplazarlos junto con el embrague.

10. Vuelva a armar el conjunto de impulsor/embrague, asegurándose que el embrague quede debidamente instalado.

11. Instale un sello de aceite nuevo (7-7) en la caja del freno. Si se retira la caja del freno del malacate, instale temporalmente el engranaje solar de entrada (8) en la caja del freno y deslice el conjunto de impulsor/embrague sobre la estría del engranaje solar.

12. Instale los platos de estator (19) y los discos de fricción (18) en la caja del freno, empezando con un plato de estator y alternando la colocación de los discos de fricción y platos de estator.

NOTA: Hay un plato de estator más que los discos de fricción. Cuando se arman correctamente, siempre debe quedar un plato de estator encima de todos.

13. Después de la instalación, revise la pila de frenos para asegurar que las dimensiones se encuentren dentro de las tolerancias indicadas en la Figura 5-11. Si la dimensión medida es mayor que la mostrada, se han dejado algunos discos de fricción y platos de estator sin instalar, o los discos de fricción se han desgastado más allá de los márgenes de tolerancia aceptables. Si la dimensión medida es menor que la mostrada, se ha instalado un número excesivo de platos o discos o éstos no están debidamente asentados.

14. Cubra los anillos “O” y los anillos de respaldo (7-2 y 7-7–7-9) nuevos con aceite liviano e instálelos en el émbolo (10). Vea la Figura 5-11 para la instalación correcta de los anillos “O”/de respaldo.

15. Instale el émbolo (10) cuidadosamente en la caja del freno (21) y golpéelo levemente para bajarlo hasta que quede asentado.

16. Instale los resortes (24) en sus cavidades respectivas en el émbolo. Si se está trabajando en posición horizontal, cubra la parte inferior de cada resorte con lubricante de chasis para mantenerlo en posición.

17. Cubra el anillo “O” nuevo (7-3) con aceite ligero e instálelo en la ranura de la cubierta del freno (20).

18. Instale la cubierta (20) en la caja del freno (21) y apriétela de modo uniforme, alternando el apriete entre per-
nos opuestos. Asegúrese de que la cubierta esté debidamente alineada con la caja del freno para orientar correctamente el motor y los tapones de respiradero/vaciado.

19. Revise la presión de liberación del freno con una bomba hidráulica portátil. La liberación completa se debe obtener a 24 bar ± 2.4 (225 psi ± 35).

Grupo de planetarios

Vea la Figura 5-10 y la lista de piezas del malacate en la página 5-11 para el procedimiento siguiente.

1. Retire los anillos retenedores en espiral (4-4 y 36-4) de los pasadores de planetarios.
2. Retire los pasadores (4-3 y 36-3) del portaplanetarios martillándolos levemente.
3. Retire los engranajes planetarios, las arandelas de empuje y los cojinetes de los portaplanetarios.
4. Inspeccione los pasadores, cojinetes y cavidades de engranajes en busca de señales de desgaste. Reemplácelos de ser necesario.
5. En los grupos de planetarios de salida, observe que se instalan dos cojinetes (4-6) con un espaciador (4-7) entre ellos.
6. Antes del armado, asegúrese de insertar las placas redondas (4-5 y 36-5) en los portaplanetarios.
7. Durante el armado, asegúrese de alinear los pasadores planetarios con las arandelas de empuje y cojinetes y después presione la parte moleteada del pasador dentro del portaplanetarios.

¡**PRECAUCIÓN!**

Si los pasadores no quedan bien alineados, las arandelas de empuje podrían romperse durante la operación de montaje a presión.

Motor

Vea la Figura 5-12 y la lista de piezas del malacate en la página 5-11 para el procedimiento siguiente.

1. Retire y rotule las mangueras.
2. Retire el bloque de válvula equilibradora (1) del conjunto de motor (42, Figura 5-10) quitando los cuatro pernos (2).
3. Retire la válvula equilibradora (3) del bloque de válvula equilibradora (1) e inspeccione el agujero dosificador pequeño en el costado de la válvula de cartucho para comprobar que no está obstruido. También inspeccione los anillos “O” para asegurar que no estén cortados ni aplastados.

4. Los motores y válvulas de cartucho no pueden repararse en campo. Envíelos a un distribuidor autorizado para darles mantenimiento.
LOCALIZACIÓN DE AVERÍAS

<table>
<thead>
<tr>
<th>Problema</th>
<th>Causa</th>
<th>Solución</th>
</tr>
</thead>
<tbody>
<tr>
<td>El malacate no sostiene la carga.</td>
<td>Contrapresión excesiva en el sistema.</td>
<td>Revise el sistema en busca de restricciones y reduzca la contrapresión.</td>
</tr>
<tr>
<td></td>
<td>Los discos de freno están desgastados.</td>
<td>Reemplace los discos de freno.</td>
</tr>
<tr>
<td></td>
<td>El embrague del malacate patina.</td>
<td>Inspeccione el embrague y el impulsor en busca de desgaste y sustituya las piezas desgastadas.</td>
</tr>
<tr>
<td>El malacate no puede elevar una carga que debiera.</td>
<td>El ajuste de la válvula de alivio podría ser demasiado bajo para permitir el levante adecuado.</td>
<td>Aumente el valor de ajuste de la válvula de alivio de presión.</td>
</tr>
<tr>
<td></td>
<td>La carga que se está elevando podría exceder la capacidad del malacate.</td>
<td>Reduzca la carga o modifique el aparejo para aumentar la ventaja mecánica.</td>
</tr>
<tr>
<td>El malacate no baja la carga.</td>
<td>La válvula de frenos se conectó incorrectamente luego de haberla desconectado.</td>
<td>Revise la tubería y corrija la conexión de las líneas.</td>
</tr>
<tr>
<td></td>
<td>El cartucho de la válvula de frenos podría tener un agujero dosificador obstruido.</td>
<td>Retire el cartucho y limpielo de ser necesario.</td>
</tr>
<tr>
<td>Fugas de aceite del respiradero en el lado del motor del malacate.</td>
<td>El sello del eje del motor podría estar averiado.</td>
<td>Reemplace este sello y reduzca la contrapresión si esta fue la causa de la falla del sello del eje.</td>
</tr>
<tr>
<td></td>
<td>Posible falla de los sellos del émbolo de freno.</td>
<td>Repare la sección del freno y reemplace las piezas desgastadas.</td>
</tr>
</tbody>
</table>
SECCIÓN 6
GIRO

CONTENIDO DE LA SECCIÓN

Descripción 6-1
Teoría de funcionamiento 6-1
Mando de giro 6-1
Freno de giro 6-2
Mecanismo y freno de giro 6-4
Retiro e instalación 6-4
Instrucciones de desarmado y armado . 6-4
Herramientas requeridas 6-4
Piezas necesarias para el reacondicionamiento . 6-4
Desarmado 6-4
Reparación de planetarios de entrada . 6-5
Reparación de planetarios de salida . 6-5
Reparación de eje 6-5
Reparación del conjunto de la caja . 6-5
Armado de la unidad 6-5
Freno de giro 6-6
Desarmado 6-7
Armado 6-8
Cojinete de giro 6-9
Descripción 6-9
Mantenimiento 6-9
Generalidades 6-9
Apriete de pernos del cojinete de giro . 6-9
Generalidades 6-9
Pernos del cojinete de giro 6-10
Herramientas requeridas 6-10
Espacio libre de cojinete 6-12
Sustitución de cojinetes 6-14
Retiro 6-14
Instalación 6-14
Ajuste del potenciómetro de giro 6-15
Calibración de sensor de giro 6-16
Pruebas 6-17
Bloqueo de giro 6-17
Retiro 6-17
Instalación 6-17
Bloqueo de la estructura 6-20
Retiro 6-20
Instalación 6-20

DESCRIPCIÓN

El sistema de giro sirve para girar la torreta de la grúa sobre el chasis del vehículo. El sistema de giro de la NBT40-1 proporciona 360° de rotación en ambos sentidos y ofrece capacidades de giro libre. En giro libre, el interruptor del freno de giro se coloca en la posición de freno OFF (SUELTO) y la torreta gira libremente después de que se suelta la palanca de SWING (GIRO), hasta que se detenga por sí sola.

NOTA: En máquinas con control remoto por radio, el freno de giro se aplica automáticamente cuando la palanca de control de giro se coloca en punto muerto.

El sistema de giro se compone de una palanca de control remoto hidráulica, una válvula de control de sentido, el mecanismo de mando de giro, el motor de giro, el freno de giro, el pedal del freno de giro y el bloqueo de la estructura. La palanca de control de giro se usa para reducir la velocidad y detener el movimiento de giro moviendo la palanca de control en sentido opuesto al del giro. El pedal de freno de giro se usa para mantener la torreta detenida en posición.

El bloqueo de la estructura se utiliza para bloquear la torreta en su lugar para el transporte.

TEORÍA DE FUNCIONAMIENTO

Mando de giro

La potencia hidráulica para el mando de giro (Figura 6-1) es suministrada por la bomba hidráulica impulsada por la toma de fuerza (TDF). El aceite fluye desde la bomba, a través de la lumbrera N.° 3 del adaptador giratorio a la válvula de control principal.

Cuando se mueve la palanca de control hidráulico remoto hacia la posición de giro a la izquierda o derecha, el caudal de aceite hidráulico que fluye a través de la válvula de control se envía al motor de giro (1, Figura 6-1). Si el interruptor del freno de giro está en la posición de freno OFF (SUELTO), la torreta girará en el sentido deseado. Si se coloca la palanca de control en punto muerto, la torreta gira hasta detenerse por sí sola. Si se mueve la palanca de control en el sentido opuesto al de movimiento, se usa potencia mecánica para detener la torreta. El pedal de freno de giro se pisa para sujetar la torreta en posición. Si el interruptor del freno de giro está en la posición de ON (APLICADO) y la grúa está equipada con el colector del motor de giro de modo doble (15), el freno de giro se suelta cuando el aceite hidráulico presurizado ingresa al colector del motor de giro de modo doble.
Freno de giro

La presión del resorte en la cámara del freno de giro aplica el freno de giro cuando está en reposo. El freno de giro es controlado por el solenoide de liberación del freno de giro en el colector piloto. Cuando el interruptor del freno de giro se coloca en la posición de freno OFF (SUELTO), la presión se envía del colector piloto a la lumbrera de liberación del freno y esta vence la presión del resorte y libera el freno de giro. Cuando el interruptor del freno de giro está en la posición de aplicado (ON), no hay presión hidráulica en la lumbrera de liberación del freno y la presión del resorte aplica el freno de giro.

Cuando está instalado el colector del motor de giro estándar (4, Figura 6-1), este provee la función de giro libre. Esto permite el uso del pedal de freno de giro para controlar el frenado. La presión hidráulica del freno de giro es suministrada por el colector piloto y está controlada por la válvula del freno de giro. Se debe soltar el freno de giro antes de intentar girar la grúa.

Cuando la grúa está equipada con controles remotos por radio o con la opción de elevación aérea, entonces se instala el colector del motor de giro de modo doble más grande (15). El colector del motor de giro de modo doble controla la liberación del freno de giro. El colector del motor de giro de modo doble se utiliza para el funcionamiento remoto o aéreo y puede cambiar entre función de giro libre y giro equilibrado estándar con el uso de una válvula de solenoide. En modo de grúa, la función es de giro libre. En modo aéreo, la función de giro libre está desactivada y el colector del modo doble funciona como giro equilibrado estándar.
<table>
<thead>
<tr>
<th>Artículo</th>
<th>Componente</th>
<th>Artículo</th>
<th>Componente</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Caja de engranajes</td>
<td>16</td>
<td>Perno (cant. 8)</td>
</tr>
<tr>
<td>2</td>
<td>Eje de salida</td>
<td>17</td>
<td>Tapón de vaciado (cant. 2)</td>
</tr>
<tr>
<td>3</td>
<td>Sello de aceite</td>
<td>18</td>
<td>Placa</td>
</tr>
<tr>
<td>4</td>
<td>Cojinete inferior</td>
<td>19</td>
<td>Arandela retenedora</td>
</tr>
<tr>
<td>5</td>
<td>Pista de cojinete inferior</td>
<td>20</td>
<td>Pasador de planetarios de salida</td>
</tr>
<tr>
<td>6</td>
<td>Pista de cojinete superior</td>
<td>21</td>
<td>Arandela</td>
</tr>
<tr>
<td>7</td>
<td>Cojinete superior</td>
<td>22</td>
<td>Cojinete de agujas</td>
</tr>
<tr>
<td>8</td>
<td>Arandela de seguridad</td>
<td>23</td>
<td>Espaciador</td>
</tr>
<tr>
<td>9</td>
<td>Contratuerca</td>
<td>24</td>
<td>Engranaje planetario de salida</td>
</tr>
<tr>
<td>10</td>
<td>Conjunto de planetarios de salida</td>
<td>25</td>
<td>Engranaje planetario de entrada</td>
</tr>
<tr>
<td>11</td>
<td>Arandela de empuje</td>
<td>26</td>
<td>Arandela retenedora</td>
</tr>
<tr>
<td>12</td>
<td>Engranaje solar de salida</td>
<td>27</td>
<td>Pasador de planetarios de entrada</td>
</tr>
<tr>
<td>13</td>
<td>Conjunto de planetarios de entrada</td>
<td>28</td>
<td>Arandela</td>
</tr>
<tr>
<td>14</td>
<td>Engranaje solar de entrada</td>
<td>29</td>
<td>Cojinete de agujas</td>
</tr>
<tr>
<td>15</td>
<td>Conjunto del freno</td>
<td>30</td>
<td>Placa</td>
</tr>
</tbody>
</table>

FIGURA 6-2

[Diagrama de la caja de engranajes de la NBT40-1 GIRO]

Engranaje planetario exterior

Engranaje planetario interior
MECANISMO Y FRENO DE GIRO

El mando de giro consiste en un reductor de engranajes planetarios dobles con freno incorporado. El reductor de engranajes planetarios está diseñado para una vida útil prolongada en situaciones de uso severo tales como la rotación de la grúa. El mando de giro tiene cojinetes de rodillos ahusados en su eje de salida y cojinetes para servicio severo en los engranajes planetarios.

NOTA: El motor de giro y las válvulas de cartucho no pueden repararse en el campo. Envíelos a un distribuidor授权 para darles mantenimiento.

Retiro e instalación

Vea la Figura 6-1 para los procedimientos siguientes.

Retiro

1. Marque y anote la ubicación de todas las mangueras hidráulicas y las lumbreras del mando de giro. Retire todas las mangueras del mecanismo de giro y tapone las mangueras y lumbreras abiertas.
2. Conecte un dispositivo de levante capaz de elevar aproximadamente 125 kg (275 lb) en el mecanismo de giro (11). Aplique tensión al cable de elevación.
3. Retire los seis pernos y arandelas planas (10) que aseguran el mecanismo de giro en la torreta. Eleve el mecanismo de giro de la torreta.
4. Retire los dos pernos de cabeza hueca y las dos arandelas de seguridad (14) que aseguran el motor hidráulico (1) al mecanismo de giro (11) y retire el motor hidráulico.

Instalación

1. Asegure el motor hidráulico (1) al mecanismo de giro (11) con dos tornillos y dos arandelas de seguridad (14).
2. Con un dispositivo de levante, coloque el mecanismo de giro (11) sobre la torreta. Asegure el mecanismo de giro (11) a la torreta con seis pernos y arandelas planas (10).
3. Conecte las mangueras hidráulicas al mecanismo de giro y el motor hidráulico.

Instrucciones de desarmado y armado

Si el mecanismo de giro necesita reparación, consulte la Figura 6-2 para ver el procedimiento de desarmado y armado.

NOTA: El mecanismo de giro montado con el motor hidráulico, el freno de giro y la válvula de control pesan 125 kg (275 lb).

Herramientas requeridas

- Punzón pequeño
- Bandeja para vaciar aceite
- Perno de argolla (1/4 pulg)
- Alicates para anillos retenedores
- Extractor de engranajes
- Llave de trinquete (vástago impulsor de 1/2 pulg)
- Casquillo de 9/16 pulg (vástago impulsor de 1/2 pulg)
- Casquillo para tuerca de piñón (N/P Whittet-Higgins BAS-14)
- Martillo blando (de latón o de plástico)
- Prensa
- Varilla de punzón (1/4 a 3/8 pulg de diámetro)
- Llave torsiométrica con vástago impulsor de 1/2 pulg con capacidad para 135 Nm (100 lb pie)

Piezas necesarias para el reacondicionamiento

- Sellos
- Anillos “O”
- Anillos de respaldo
- Piezas para sustituir a piezas dañadas o desgastadas
- Contratuercas (9, Figura 6-2) y arandela de seguridad (8)

Desarmado

Vea la Figura 6-2 para el procedimiento siguiente.

1. Use un punzón pequeño para hacer un juego de marcas en la brida del conjunto del freno (15) y en el borde superior de la caja de engranajes (1) para ayudar durante el armado.
2. Saque los dos tapones de vaciado (17) y vacíe el aceite de la máquina. El aceite se vacía más fácilmente cuando está caliente.
3. Saque los ocho pernos (16) que sujetan el conjunto de freno (15) a la caja de engranajes (1).
4. Levante el conjunto de freno (15) para quitarlo del mecanismo de giro. De ser necesario, enrosque los pernos del motor hidráulico en el conjunto del freno para usarlos como asideros.
5. Retire la arandela de empuje (11) y el engranaje solar de entrada (14) del conjunto de planetarios de entrada.
6. Instale tres pernos de argolla de 1/4 pulg en los tres pasadores del conjunto de planetarios de entrada (13) y utilice una cadena pequeña para extraer el conjunto de planetarios de entrada de la caja de engranajes.
7. Retire el engranaje solar de salida (12) y la arandela de empuje (11) del conjunto de planetarios de salida (10).

8. Utilice el método de pernos de argolla/cadena descrito en el paso 6 para sacar el conjunto de planetarios de salida (10) de la caja de engranajes.

9. Para retirar el eje de salida (2) de la caja de engranajes (1), doble la pestaña de la arandela de seguridad (8) para sacarla de la ranura de la contratuerca (9). Suelte la contratuerca y quitela del eje de salida.

PRECAUCIÓN
La contratuerca ya no retiene al eje de salida. Tenga cuidado al mover la caja de engranajes, porque el eje de salida podría caerse.

10. Retiro del eje de salida. Coloque la caja de engranajes (1) sobre una plancha o mesa con un agujero que permita que el eje de salida (2) sobresalga por el agujero. Aplique presión al eje de salida para sacarlo por la parte inferior de la caja por medio de aplicarle una carga mínima al extremo roscado del eje de salida hasta que pase a través del cojinete del eje superior (6 y 7).

La unidad ahora está desarmada en grupos de piezas. Las zonas que requieran reparación deben identificarse por medio de una inspección minuciosa de las piezas después de haberlas lavado con disolvente. Vea la sección de reparación del grupo apropiado.

Reparación de planetarios de entrada
Vea la Figura 6-2 para el procedimiento siguiente.

1. Retire las arandelas retenedoras (26) de los pasadores de planetarios.

2. Utilice una prensa para retirar los pasadores de planetarios (27) del portaplanetarios. Sostenga el conjunto de planetarios de entrada (13) para retirar los pasadores de planetarios.

3. Deslice los engranajes planetarios (25) y las arandelas (28) para sacarlos del conjunto de planetarios de entrada.

4. Retire la placa (30) del conjunto de planetarios de entrada.

5. Si es necesario sustituir los cojinetes de aguja (29), éstos pueden retirarse de los engranajes planetarios de entrada (25) en este momento.

6. Vuelva a armar el grupo de engranajes de entrada invirtiendo el orden de los pasos de retiro y utilizando las piezas nuevas que se requieran.

7. Antes del armado, asegúrese de insertar la placa (30) en el conjunto de planetarios de entrada.

8. Para el armado, alinee cuidadosamente los pasadores de planetarios (27) con las arandelas (28) y los cojinetes de aguja (29) y después presione la parte moleteada del pasador de planetarios (27) en el conjunto de planetarios de entrada (13). Si los pasadores de planetarios (27) no quedan bien alineados, las arandelas (28) podrían romperse durante la operación de montaje a presión. Vuelva a instalar las arandelas retenedoras (26) en los pasadores de planetarios.

Reparación de planetarios de salida
Vea la Figura 6-2 para el procedimiento siguiente.

La reparación del conjunto de engranajes planetarios de salida es la misma que la del conjunto de engranajes planetarios de entrada con una excepción: el conjunto de engranajes planetarios de salida tiene dos cojinetes de aguja (22) por pasador de planetario (20) con un espaciador (23) entre los cojinetes.

Reparación de eje
Vea la Figura 6-2 para el procedimiento siguiente.

1. El cojinete inferior (4) puede retirarse del eje de salida (2) usando un extractor de engranajes.

2. Retire el sello viejo (3) y bótelo. Engrase el cojinete inferior (4) con grasa de litio o grasa para presiones extremas (EP) e instálelo en la pista (5) de la caja de engranajes (1). El cojinete viejo (4) puede volverse a utilizar únicamente si se lo retiró para sustituir el sello y no es la causa de la falla del sello. Utilice una prensa o un martillo y una barra grande con extremo plano o varilla para meter el sello de aceite nuevo a presión en la caja de engranajes (1) hasta que el sello de aceite quede a ras.

NOTA: Si se reemplaza el cojinete (4), también es necesario reemplazar la pista (5).

3. Instale el eje de salida (2) en la caja de engranajes (1). Tenga cuidado de no dañar el sello (3) en la caja de engranajes.

Reparación del conjunto de la caja
Vea la Figura 6-2 para el procedimiento siguiente.

1. Retire la pista de cojinete (6) y sustitúyala de ser necesario.

2. Limpie todas las materias extrañas de la caja.

Armado de la unidad
Vea la Figura 6-2 para el procedimiento siguiente.

1. Coloque la caja de engranajes (1) en una mesa con el extremo con engranaje del eje de salida (2) sobre la superficie de la mesa.
PRECAUCIÓN
El eje de salida y la caja no están sujetos entre sí en este momento. Mueva la unidad de modo que el eje de salida y el engranaje no se separen uno del otro.

2. Sujete el engranaje del eje de salida (2) y gire la caja de engranajes (1) para comprobar que se mueve libremente. La resistencia leve que se percibe se debe a la carga de los sellos sobre el eje de salida (2).

3. Engrase el cojinete superior (7) con grasa de litio o grasa para presiones extremas (EP). Deslice el cojinete superior sobre el extremo roscado del eje de salida (2) con el extremo pequeño hacia abajo. Presione el cojinete superior lentamente hasta que quede asentado.

Sujete el eje de salida y gire la caja de engranajes cuando se instala el cojinete superior. El cojinete está asentado cuando todos sus rodillos giran de modo uniforme.

NOTA: Si se reemplaza el cojinete superior, también es necesario reemplazar la pista (6).

4. Deslice la arandela de seguridad (8) a lo largo del extremo roscado del eje de salida (2) hasta que llegue al extremo del cojinete (7).

5. Enrosque la contratuerca (9) en las rosca del eje de salida (2) y apriétela hasta que quede firme.

6. Ajuste la precarga del cojinete apretando la contratuerca (9) en el eje de salida (2) a un par de 135 Nm (100 lb pie). La precarga adecuada del cojinete se determina por medio del método de apriete de resistencia a la rodadura. Este método requiere aumentar la carga de presión de los cojinetes (4 y 7) hasta que se obtenga una resistencia a la rodadura de 8.4 a 9.6 Nm (75 a 85 lb pulg) al girar la caja.

Esto incluye la resistencia tanto del cojinete como de los sellos. El par de apriete equivale a una fuerza de 8.4 a 9.6 Nm (75 a 85 lb pulg) aplicada a un perno enroscado en uno de los agujeros de montaje del conjunto de freno para girar la caja. Doble la pestaña de la arandela de seguridad (8) a su lugar en la contratuerca (9).

7. Coloque la caja de engranajes (1) en una mesa con el extremo con engranaje del eje de salida (2) sobre la superficie de la mesa.

8. Baje el conjunto de planetarios de salida (10) para meterlo en la caja hasta que los engranajes planetarios se engranen con los dientes de la caja de engranajes. Baje el conjunto de planetarios de salida hasta que los engranajes planetarios se engranen en los dientes del eje de salida. Gire el conjunto de planetarios de salida o el eje de salida hasta que el conjunto de planetarios de salida se deslice hacia abajo para permitir el contacto pleno entre los dos juegos de dientes de engranaje.

9. Sujete firmemente el extremo del piñón del eje de salida y gire el mecanismo lentamente para comprobar que los grupos de engranajes giren libremente.

10. Instale la arandela de empuje (11) y el engranaje solar de entrada (12) en el extremo del conjunto de planetarios de salida (10).

11. Baje el conjunto de planetarios de entrada (13) para meterlo en la caja de engranajes (1) hasta que los engranajes planetarios se engranen con los dientes del extremo de entrada del engranaje solar de salida (12).

12. Gire el conjunto de planetarios de entrada (13) o el eje de salida hasta que el conjunto de planetarios de entrada se deslice hacia abajo para permitir el contacto pleno entre los dos juegos de dientes del engranaje.

13. Sujete firmemente el extremo del piñón del eje de salida (2) y gire el mecanismo lentamente para comprobar que el conjunto de planetarios gire libremente.

14. Instale la arandela de empuje (11) y el engranaje solar de entrada (14) en el conjunto de planetarios de entrada (13).

15. Lubrique un anillo “O” nuevo (1, Figura 6-3) e instálelo en la ranura de la parte superior de la caja de engranajes (1).

16. Coloque el conjunto de frenos (15) en la parte superior de la caja de engranajes (1). Las marcas hechas durante el proceso de desarmado ayudan a alinear correctamente el conjunto de frenos con la caja de engranajes (1).

17. Instale los ocho pernos (16) en el conjunto de frenos (15) y apriételos a 40 Nm (30 lb pie).

18. Aplique pasta selladora de tubería a uno de los tapones de vaciado (17) e instale el tapón en el agujero inferior de la caja de engranajes (1).

19. Llene la caja de engranajes con 3.8 l (1 gal) de grasa para engranajes EP 80-90.

20. Aplique pasta selladora de tubería al otro tapón de vaciado e instale el tapón en el agujero superior de la caja de engranajes.

FRENO DE GIRO
El freno de giro está fabricado para dos tipos específicos de requisitos de par de apriete de retención: modo de estacionamiento y giro libre. El freno de giro permanece en modo de estacionamiento hasta que se aplica presión de aceite a la cámara del émbolo de freno en el conjunto de freno. A medida que se aumenta la presión de aceite, se vence la tensión del resorte que mantiene el freno aplicado y se suelta el freno. Una vez que se suelta el freno, la grúa puede girar libremente. La rotación de la grúa se controla por medio de aplicar presión al émbolo de freno dinámico, la cual vuelve a aplicar la presión a los discos de freno.
Desarmado

Vea la Figura 6-3 para el procedimiento siguiente.

1. Utilice un punzón para hacer un par de marcas en el borde de la cubierta del freno (22) y en la parte superior de la caja de freno (2) para ayudar durante el proceso de armado.

2. Retire el motor hidráulico del conjunto de freno.

3. Desenrosque alternadamente los ocho pernos (23) una vuelta a la vez hasta que se alivie la tensión del resorte interno.

4. Levante y retire la cubierta de la caja del freno.

5. Retire los resortes de freno (20) del conjunto de freno.

6. Aplique presión hidráulica baja (138 kPa [20 psi]) a la lumbrera de liberación del freno mientras sujeta con una mano la parte superior del émbolo del freno (19). La presión forzará al émbolo fuera de la caja de freno.

7. Retire los discos de fricción (14) y los platos de estator (13) de la caja de freno.

NOTA: Anote el orden en el cual se retiraron los discos de fricción porque es preciso volverlos a instalar en el mismo orden.

8. Retire el impulsor del freno (11) de la caja de freno.

9. De ser necesario, retire los dos anillos retenedores (10 y 12) del interior del impulsor de freno.

10. Aplique presión hidráulica baja (138 kPa [20 psi]) a la lumbrera de freno dinámico para empujar el émbolo del freno dinámico (9) fuera de la caja de freno.

11. Retire el cojinete (4) y el sello de aceite (3) de la caja de freno.

PELIGRO

No fije ni restrinja la cubierta en modo alguno mientras se sacan los pernos porque el freno se encuentra bajo una tensión de resorte muy elevada.
El armado se hace invirtiendo el orden del procedimiento de desarmado, con las instrucciones adicionales siguientes.

1. Lubrique el reborde del sello de aceite (3) con el mismo tipo de aceite hidráulico utilizado en la grúa. Instale el sello de aceite a presión en la caja de freno (2) con el lado abierto del sello orientado hacia el extremo del motor hidráulico del conjunto del freno. Instale el cojinete (4) en la caja del freno.

2. Si se reemplazan los anillos “O” (6 y 7) del freno dinámico, asegúrese de instalar los anillos “O” y sus anillos de respaldo (5 y 8) en el mismo orden que se retiraron. Lubrique con aceite hidráulico para ayudar al armado.

3. Deslice el émbolo del freno dinámico (9) suavemente dentro de la caja de freno. Oprima el émbolo hacia abajo usando la palma de las dos manos para comprimir los anillos “O” en la caja. Empuje el émbolo completamente dentro de la caja.
4. Instale el impulsor del freno (11) en la caja de freno empujándolo hacia abajo hasta que el reborde del cojinete del impulsor quede asentado contra el cojinete. Asegúrese de que los anillos retenedores (10 y 12) estén instalados en el impulsor.

5. Instale los platos de estator (13) y los discos de fricción (14) en la caja de freno en precisamente el mismo orden en que se retiraron. Observe que hay dos platos de estator juntos en el centro de la pila. Procure no contaminar las superficies de fricción con tierra, grasa ni fluidos aparte de los especificados para el modelo de freno.

NOTA: Si se van a instalar discos de fricción nuevos, empápe todos los discos en aceite hidráulico por aproximadamente 10 minutos antes de instalarlos.

6. Vierta el aceite hidráulico en la caja de freno (2) hasta que quede a nivel con la superficie superior de los discos de freno y platos de estator.

7. Si se reemplazan los anillos “O” de émbolo de freno (16 y 17), asegúrese de volver a instalar los anillos “O” y sus anillos de respaldo (15 y 18) en el mismo orden que se retiraron. Lubrique los anillos “O” y anillos de respaldo con aceite hidráulico para ayudar durante el armado.

8. Deslice el émbolo del freno de estacionamiento (19) suavemente dentro de la caja de freno. Presione el émbolo de freno hacia abajo firmemente utilizando las palmas de las dos manos. Esto comprime los anillos “O” en la caja y ajusta el émbolo del freno contra los platos de estator.

9. Inserte los resortes (20) en el émbolo de freno.

10. Lubrique el anillo “O” (21) con aceite hidráulico e instálelo en la cubierta de freno (22).

11. Coloque la cubierta de freno cuidadosamente sobre los resortes de modo que éstos permanezcan verticales en el émbolo del freno.

12. Empiece a enroscar los ocho pernos (23) en la caja del freno con la mano. Apriete los pernos alternadamente una vuelta a la vez hasta que la cubierta quede ajustada contra la caja de freno. Apriete los pernos a un par de 41 a 47 Nm (30 a 35 lb pie).

MANTENIMIENTO

Generalidades

El cojinete de giro es el punto de mantenimiento más crítico de la grúa. Es en este punto, en la línea central de rotación, que se concentran los esfuerzos de las cargas. Además, el cojinete es el único punto de conexión entre la torreta y el vehículo. Por lo tanto, el cuidado adecuado del cojinete y el mantenimiento periódico de los pernos de la torreta al cojinete son necesarios para el funcionamiento seguro y eficiente de la máquina.

APRIETE DE PERNOS DEL COJINETE DE GIRO

Generalidades

PELIGRO

Es obligatorio inspeccionar y volver a apretar los pernos de fijación del cojinete de giro y de la caja de torsión después de las primeras 300 horas de funcionamiento de la grúa y cada 500 horas de allí en adelante. Los pernos podrían soltarse y permitir la separación de la grúa del vehículo, lo cual dañaría la grúa y podría causarle lesiones o la muerte al personal.

El mantenimiento del valor de apriete correcto de los pernos es sumamente importante para conservar la resistencia estructural, el rendimiento y la confiabilidad de la grúa. Las variaciones en el par de apriete pueden causar la deformación, agarrotamiento o separación completa de la torreta y el vehículo.

PRECAUCIÓN

El apriete repetido de los pernos puede causar su estiramiento. Si los pernos continúan soltándose, será necesario reemplazarlos con pernos nuevos del grado y tamaño adecuados.

Es importante identificar correctamente el grado de los pernos. Cuando se utilizan pernos de resistencia elevada (grado 8), el técnico deberá ser consciente de la categoría de los pernos y de que está instalando un componente termotratado y templado de alta resistencia, por lo cual es necesario instalar el perno de acuerdo con la especificación. Preste atención especial a la presencia de lubricantes y chapado que pudieran hacer necesario usar un valor de apriete diferente del de componentes sin lubricar. Cuando se retira o se suelta un perno de resistencia elevada, reemplácelo con un perno nuevo de la misma categoría.

¡Conozca su llave torsiométrica! Las llaves de vástago flexible, aunque estén provistas de una función de valor predeterminado, deben tirarse en sentido perpendicular y la fuerza debe aplicarse en el punto central del mango. Las mediciones de valores de fuerza deben tomarse cuando la
herramienta está en movimiento. Las herramientas de mango rígido, con dispositivos limitadores de apriete que pueden ajustarse al valor deseado, eliminan la necesidad de cuadrantes y proporcionan aprietes más confiables y menos variables.

NOTA: Cuando se utilizan multiplicadores de par y/o herramientas especiales para alcanzar puntos de acceso difícil, verifique que las indicaciones de par de apriete se hayan calculado con precisión.

Las llaves torsiométricas son instrumentos de precisión y deben manipularse con cuidado. Para asegurar la precisión, es necesario calibrarlas periódicamente. Si existe la posibilidad de que una llave torsiométrica haya sido sometida a esfuerzos excesivos o se haya dañado, póngala fuera de servicio de inmediato hasta calibrarla. Cuando se usa una llave torsiométrica, todo movimiento irregular o súbito puede causar la aplicación de un par de apriete excesivo o incorrecto. **Siempre** mueva la llave lentamente y **deténgase** al obtener el valor predeterminado.

Si el operador de la grúa indica que esta ha sido sobrecargada, o si se sospecha que se han excedido las capacidades de carga que la grúa, entonces será necesario inspeccionar y volver a apretar todos los pernos del cojinete de giro según las especificaciones.

Apriete los pernos del cojinete de giro al par especificado siguiendo los procedimientos descritos en esta sección.

Pernos del cojinete de giro

La pista interior del cojinete de giro se fija a la torreta por medio de 36 pernos (Figura 6-5). La pista exterior del cojinete se fija al chasis del vehículo por medio de 36 pernos (Figura 6-5).

Herramientas requeridas

Se necesita un juego completo de herramientas especiales para apretar los pernos del cojinete de giro (vea la Figura 6-4).

Procedimiento de apriete de la pista interior

Vea la Figura 6-5 para el procedimiento siguiente.

Los pernos de la pista interior (1—36) pueden accederse a través de los agujeros de acceso que están debajo de la plataforma (1, Figura 6-6).

Tabla 6-1. Apriete de pernos de la pista interior

<table>
<thead>
<tr>
<th>Apriete de pernos de la pista interior</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apriete de primera pasada</td>
<td>637 Nm ± 27 (470 lb pie ± 20)</td>
</tr>
<tr>
<td>Apriete de pasada final</td>
<td>1161.9 a 1259.6 Nm (857 a 929 lb pie)</td>
</tr>
</tbody>
</table>

1. Extienda y emplace los estabilizadores, y eleve la pluma completamente.

2. Para la primera pasada, apriete los pernos del cojinete de giro de la pista interior (1, 19, 10, 28, 6, 23, 15 y 33) al par de apriete mostrado en la Tabla 6-1. Utilice un casquillo, multiplicador de par, adaptador de juego, las extensiones necesarias y una llave torsiométrica.

3. Para la pasada final, comenzando con el primer perno (1), apriete los pernos de la pista interior secuencialmente en el sentido de las agujas del reloj al par de apriete que se muestra en la Tabla 6-1, usando las mismas herramientas que en el paso 2.
Procedimiento de apriete de la pista exterior

Los pernos de la pista exterior (1, Figura 6-7) se encuentran en la parte superior del cojinete.

Tabla 6-2. Apriete de pernos de la pista exterior

| Apriete de primera pasada | 637 Nm ± 27 (470 lb pie ± 20) |
| Apriete de pasada final | 846 a 916 Nm (624 a 676 lb pie) |

Vea la Figura 6-5 para el procedimiento siguiente.

4. Extienda y emplace los estabilizadores, y eleve la pluma completamente.

5. Para la primera pasada, apriete los pernos del cojinete de giro de la pista exterior (1, 17, 9, 25, 4, 20, 12 y 28) al par de apriete mostrado en la Tabla 6-2.. Utilice un casquillo, multiplicador de par, adaptador de juego, las extensiones necesarias y una llave torsiométrica.

6. Para la pasada final, comenzando con el primer perno (1), apriete los pernos de la pista exterior secuencialmente en el sentido de las agujas del reloj al par de apriete que se muestra en la Tabla 6-2., usando las mismas herramientas que en el paso 2.

ESPACIO LIBRE DE COJINETE

Si un cojinete de giro exhibe alguno de los síntomas siguientes, posiblemente ha llegado al final de su vida útil.

- Partículas metálicas en la grasa
- Requiere mayor potencia impulsora
- Ruidos
- Funcionamiento áspero
- Aumento acelerado del desgaste normal en el espacio libre del cojinete

Mida el espacio libre interno del cojinete de giro para determinar si es necesario sustituirlo. (Consulte el boletín de información de apoyo técnico de National Crane TSI N.º 10).
SUSTITUCIÓN DE COJINETES

Retiro

1. Extienda completamente y emplace los estabilizadores lo suficiente para quitar la holgura de sus bases.

NOTA: No levante la máquina con los estabilizadores.

2. Gire la pluma a aproximadamente 20° de la orientación hacia el frente, de modo que la pluma quede libre de la cabina del camión.

NOTA: Es necesario poder acceder a los pasadores del cilindro de elevación desde la plataforma del camión.

3. Marque la posición del motor de giro. Es necesario sacar los pernos que están debajo del motor de giro antes de sacar los demás pernos del cojinete.

4. Gire la pluma para volverla a colocar hacia el frente y saque los pernos de la plataforma de giro que están entre las marcas.

5. Gire la pluma lentamente de nuevo a la posición desviada 20° de la posición hacia el frente.

6. Eleve la pluma ligeramente y apague el motor.

7. Marque y desconecte los cables de la batería.

8. Retire la pluma y el cilindro de elevación siguiendo los procedimientos dados en la Sección 4 de este manual.

9. Marque y desconecte las líneas hidráulicas del lado del vehículo del adaptador giratorio. Tape todas las líneas y aberturas.

10. Desconecte los conectores del arnés de alambrado del adaptador giratorio del lado del vehículo.

11. Enrolle el arnés de alambrado y fíjelo al adaptador giratorio para evitar que el arnés sufra daños durante el retiro de la torreta.

NOTA: El adaptador giratorio se retira junto con la torreta.

12. Conecte una eslinga adecuada a la torreta. Quite la holgura de la eslinga. No tire de la torreta hacia arriba.

PELIGRO

Verifique que el dispositivo de levante sea capaz de soportar el conjunto de la pluma.

13. Saque los pernos y arandelas restantes que aseguran la pista exterior del cojinete de giro al vehículo.

14. Levante la torreta cuidadosamente y colóquela sobre bloques que no le permitan inclinarse ni desplazarse. Deje el dispositivo de levante conectado.

NOTA: Si se va a volver a instalar el cojinete actual, marque la posición del cojinete de giro en la torreta antes del retiro.

15. Saque los 36 pernos de la pista interior del cojinete de giro.

16. Levante la torreta para quitarla del cojinete de giro y colóquela sobre bloques.

NOTA: El cojinete de giro pesa aproximadamente 284 kg (625 lb).

Revise los dientes del cojinete en busca de picaduras y fisuras. Si se descubre evidencia de esto, reemplace el cojinete. Verifique que los agujeros para perno estén libres de tierra, aceite y de materias extrañas.

Instalación

PELIGRO

No vuelva a utilizar los pernos del cojinete de giro. El cojinete de giro se aprieta al par de apriete aplicado de los pernos grados 8 y L9. El uso de pernos nuevos asegura que el apriete y la resistencia de los pernos serán suficientes para asegurar el cojinete de giro y la torreta al vehículo.

NOTA: Si se va a reinstalar el cojinete actual, alinee los dientes marcados del eje de piñón del mando de giro con los dientes marcados del cojinete.

1. Utilice un dispositivo de levante adecuado para colocar la torreta en el cojinete de giro. Si se va a utilizar el mismo cojinete, colóquelo en la posición que se marcó antes de retirarlo.

2. Instale 36 pernos y arandelas nuevos para fijar el cojinete de giro a la torreta. Apriete los pernos. “Procedimiento de apriete de la pista interior” en la página 6-10.

3. Utilice un dispositivo de levante adecuado para alinear la torreta sobre el vehículo en la misma posición que tenía antes de retirarla.

4. Baje cuidadosamente la torreta a su posición en la placa del cojinete. Tenga cuidado de no dañar el conjunto del adaptador giratorio.

PELIGRO

Cerciórese de que los bloques sean capaces de soportar el peso de la torreta.
5. Instale los pernos y arandelas que no están cubiertos por el motor de giro. Apriete los pernos. Consulte “Procedimiento de apriete de la pista exterior” en la página 6-12 y la Figura 6-5.

NOTA: Si se va a instalar un cojinete nuevo, será necesario instalar también un engranaje de piñón nuevo (1, Figura 6-10). Alinee el punto alto (excentricidad máxima) (2) del cojinete con el punto alto del engranaje de piñón nuevo.

6. Instale el piñón del mando de giro de modo que su punto alto (excentricidad máxima) se alinee con el punto alto del cojinete de la torreta. Compruebe el juego entre dientes con un suplemento de 0.203 mm (0.008 pulg) (3, Figura 6-10). Si es necesario mover el piñón para obtener el juego entre dientes apropiado, consulte a su distribuidor local.

7. Conecte los conectores del arnés de alambrado del adaptador giratorio a los receptáculos del vehículo.

8. Conecte las líneas hidráulicas de acuerdo con las etiquetas colocadas durante el retiro.

9. Instale la pluma y el cilindro de elevación siguiendo los procedimientos dados en la Sección 4 de este manual.

10. Vuelva a conectar las baterías.

11. Gire la torreta cuidadosamente de modo que los agujeros de pernos que estaban cubiertos por el motor de giro ahora queden accesibles.

12. Instale los pernos restantes del cojinete de giro. Apriete los pernos. Consulte “Procedimiento de apriete de la pista exterior” en la página 6-12 y la Figura 6-5.

13. Consulte “Ajuste del potenciómetro de giro” en la página 6-15 para revisar que el potenciómetro de giro en el adaptador giratorio eléctrico esté debidamente orientado.

Ajuste del potenciómetro de giro
Vea la Figura 6-11 para el procedimiento siguiente.

El potenciómetro de giro es un componente del conjunto de adaptador giratorio hidráulico y eléctrico que se monta dentro de la torreta de la superestructura. La parte superior del conjunto de adaptador giratorio es la sección del adaptador giratorio eléctrico (1) y contiene el potenciómetro de giro (2).

1. Retire la cubierta de la sección del adaptador giratorio eléctrico (1).

2. Con el uso de los controles de la cabina, rote la torreta en la parte delantera y aplique el freno de giro.

3. Ajuste la consola del RCL para que indique el ángulo de giro de la manera siguiente:
a. Complete la configuración de la consola del RCL de acuerdo con la configuración operativa actual de la grúa. Consulte el manual del limitador de capacidad nominal (RCL) para obtener instrucciones detalladas.

b. Presione el botón RCL.

c. Presione el botón OK (ACEPTAR).

d. Mueva el interruptor a la posición de SLEW (GIRO) y oprima el botón OK (ACEPTAR) para visualizar los límites de definición de zona de trabajo del ángulo de giro.

4. Suelte el freno de giro y gire la torreta aproximadamente 10° hacia la derecha (en el sentido de las agujas del reloj) y pare. Lentamente gire la torreta de vuelta hacia el centro y pare. Aplique el freno de giro.

NOTA: Si la torreta gira más allá de la posición central, es necesario repetir el paso 4.

5. Suelte los tres tornillos (3) que fijan el potenciómetro de giro a la placa de montaje.

6. Gire el cuerpo del potenciómetro de giro (2) hasta que el ángulo de giro indicado mida 0.6° ± 0.1°.

7. Apriete los tres tornillos (3) que fijan el potenciómetro de giro a la placa de montaje. Instale la cubierta en el adaptador giratorio eléctrico.

8. Suelte el freno de giro y gire la torreta aproximadamente 10° hacia la izquierda (en el sentido contrario a las agujas del reloj) y pare. Lentamente gire la torreta de vuelta hacia el centro y pare. Aplique el freno de giro.

NOTA: Si la torreta gira más allá de la posición central, es necesario repetir el paso 8.

9. Si el ángulo que se indica en la consola no es mayor que ± 1.0°, continúe con el paso 10. Si el ángulo indicado es mayor que ± 1.0°, regrese al paso 4.

10. Suelte el freno de giro y gire la torreta aproximadamente 10° hacia la derecha (en el sentido de las agujas del reloj) y pare. Lentamente gire la torreta de vuelta hacia el centro y pare. Aplique el freno de giro.

NOTA: Si la torreta gira más allá de la posición central, es necesario repetir el paso 10.

11. Si el ángulo que se indica en la consola no es mayor que ± 1.0°, continúe con el paso 12. Si el ángulo indicado es mayor que ± 1.0°, regrese al paso 4.

12. Suelte el freno de giro y gire la torreta aproximadamente 10° hacia la izquierda (en el sentido contrario a las agujas del reloj) y pare. Lentamente gire la torreta de vuelta hacia el centro y pare. Aplique el freno de giro.

13. Apriete los tornillos y vuelva a instalar la cubierta en la sección del adaptador giratorio eléctrico (1).

Calibración de sensor de giro

El siguiente procedimiento es para grúas equipadas con la opción A92.2.

El sensor de giro es un componente del conjunto de adaptador giratorio hidráulico y eléctrico que se monta dentro de la torreta de la superestructura (1, Figura 6-11). La parte superior del conjunto de adaptador giratorio es la sección del adaptador giratorio eléctrico (1, Figura 6-12) y contiene el sensor de giro (2, Figura 6-12).

NOTA: La calibración del sensor de giro requiere el software Orchestra (versión 2.4.7 o posterior), una computadora con el sistema operativo Windows y el cable de diagnóstico 80009992. “Herramientas para localización de averías” en la página 3-2 para más información.

1. Conecte el cable de diagnóstico 80009992 a una de las lumbreras USB en la computadora. Conecte el otro extremo al conector de diagnóstico ubicado en el lado derecho detrás del panel de control de estabilizadores del lado derecho (Figura 6-13).
2. Abra el menú de inicio en la computadora y vaya a Todos los programas>Orchestra>Orchestra 2.4.7 (o posterior).
3. Cuando se abra la ventana de Orchestra, seleccione la pestaña Conductor (Conductor).
4. En la vista Conductor (Conductor), elija la conexión correcta del menú desplegable y haga clic en el botón Connect (Conectar) en la esquina superior izquierda.
5. Una vez conectado, aparecerá un mensaje guía que le indicará que elija un archivo IOC. Seleccione Choose File (Elegir archivo) para abrir la ventana del explorador y busque el archivo IOC que coincida con la versión actual del software. Seleccione Open (Abrir) para cargar el archivo IOC.
6. En el campo de contraseña, escriba Manitowoc1 y seleccione Load (Cargar).
7. Expande el menú desplegable View (Ver) a la izquierda de la pantalla y seleccione las EEPROM de la lista de ventanas bajo el menú.
8. En la ventana de EEPROM, ubique la EEPROM EE_Slew_Angle_Center.
 NOTA: Cuando ajuste el valor de la EEPROM, sume o reste el valor multiplicado por 100 al valor de la EEPROM actual. Por ejemplo, si el valor de la variable era 25°, se sumaría 2500 al valor actual de la EEPROM.
10. Mientras observa la variable V_CurrentSwingAng_Deg, ajuste el valor EE_Slew_Angle_Center de la EEPROM hasta que la variable V_CurrentSwingAng_Deg muestre 0°.
11. Cuando el valor de la EEPROM quede configurado correctamente, guarde los valores seleccionando Save All (Guardar todo) en el menú desplegable Save (Guardar) en la parte superior de la ventana EEPROM.
12. Exporte los datos de la EEPROM para los registros de Manitowoc Crane Care o del distribuidor.
13. Desconecte el cable de diagnóstico 80009992 de la computadora y del conector de diagnóstico.

Pruebas
Active la grúa y verifique que funcione correctamente.

BLOQUEO DE GIRO
El bloqueo de giro de 360° sujeta la torreta en su lugar e impide cualquier tipo de movimiento, ya sea en sentido contrario de las agujas del reloj o en sentido horario.

Este es un bloqueo mecánico que se engrana y desengrana por medio de un conjunto de cables que se conecta al pedal de bloqueo de giro en la cabina del operador.

Presionar el pedal permite que el bloqueo se engrane en la corona dentada del cojinete de giro. Soltar el pedal desengrana el bloqueo se engrane en la corona dentada del cojinete.

Retiro
Vea la Figura 6-14 para los procedimientos siguientes.
1. Suelte el pedal de bloqueo de giro y asegúrese que el bloqueo de giro está desengranado de la corona dentada del cojinete de giro (15).
2. Quite el pasador de horquilla (1), el pasador hendido (2) y la arandela (3) que aseguran el cable (4) al bloqueo de giro (5).
3. Retire el suplemento (6), los pernos (7) y las arandelas de seguridad (8).
4. Retire los cuatro pernos (9), los bujes (10) y las arandelas planas (11), y retire el bloqueo de giro (5) de la torreta.
5. Retire los dos resortes (12) del bloqueo de giro. Inspeccione los resortes en busca de desgaste y daños. Sustituya los resortes según sea necesario.
6. Inspeccione el conjunto de bloqueo de giro en busca de desgaste o daño. Sustituya las piezas según sea necesario.

Instalación
Vea la Figura 6-14 para los procedimientos siguientes.
1. Coloque el bloqueo de giro (5) en la torreta y asegúrelo con los cuatro pernos (9), los bujes (10) y las arandelas planas (11).
2. Ponga el suplemento (6) encima del bloque de montaje del bloqueo de giro y asegure con los pernos (7) y las arandelas de seguridad (8).
 NOTA: Use los suplementos para eliminar todo el movimiento lateral entre el bloqueo de giro (5) y los bloques de montaje del bloqueo de giro soldados a la torreta.
3. Conecte el cable (4,) al bloqueo de giro (5) con el pasador de horquilla (1), el pasador hendido (2) y la arandela (3).
4. Ajuste el cable (4) utilizando procedimiento siguiente.
 a. Engrané el conjunto de bloqueo de giro con la corona dentada del cojinete de giro de manera que se logre el máximo engrane de los dientes.
b. La Figura 6-14 muestra una vista lateral (A) del bloqueo de giro engranado con la corona dentada del cojinete de giro (15).

Cuando el bloqueo de giro está desengranado la separación entre la corona dentada del cojinete de giro (15) y el bloqueo de giro es de 14.5 mm (0.57 pulg). Esto permitirá que el cojinete de giro gire libremente y provea un engrane máximo cuando se aplique el bloqueo de giro.

c. Ajuste el perno de tope (13) hasta que la cabeza del perno entre en contacto con el brazo en el conjunto de bloqueo de giro. Apriete firmemente la contratuerca (14).

d. Ajuste el cable de manera tal que tire del brazo debidamente contra el perno de tope (13) cuando el pedal de control está totalmente engranado.

e. Conecte los resortes (12) y accione la palanca de control del pedal varias veces para verificar que el bloqueo se engrana y desengrana correctamente de la corona dentada (15). Ajuste el cable según se requiera.

<table>
<thead>
<tr>
<th>Art.</th>
<th>Descripción</th>
<th>Art.</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pasador de horquilla</td>
<td>9</td>
<td>Perno (cant. 4)</td>
</tr>
<tr>
<td>2</td>
<td>Pasador hendido</td>
<td>10</td>
<td>Buje (cant. 4)</td>
</tr>
<tr>
<td>3</td>
<td>Arandela</td>
<td>11</td>
<td>Arandela plana (cant. 4)</td>
</tr>
<tr>
<td>4</td>
<td>Cable</td>
<td>12</td>
<td>Resorte (cant. 2)</td>
</tr>
<tr>
<td>5</td>
<td>Bloqueo de giro</td>
<td>13</td>
<td>Perno de tope</td>
</tr>
<tr>
<td>6</td>
<td>Suplemento</td>
<td>14</td>
<td>Contratuerca</td>
</tr>
<tr>
<td>7</td>
<td>Perno (cant. 2)</td>
<td>15</td>
<td>Corona dentada de cojinete de giro</td>
</tr>
<tr>
<td>8</td>
<td>Arandela de seguridad (cant. 2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BLOQUEO DE LA ESTRUCTURA

El bloqueo de la estructura sujeta la torreta en su lugar e impide cualquier tipo de movimiento, ya sea en sentido contrario de las agujas del reloj o en sentido horario cuando la grúa está en tránsito.

Este es un bloqueo mecánico que se engrana y desengrana por medio de un conjunto de cables de empujar-tirar que se encuentra en la cabina del operador.

Empujar la manija del cable de bloqueo de la estructura permite que el pasador de bloqueo de la estructura se enganche en el agujero de bloqueo en la caja de torsión. Tirar de la manija del cable de bloqueo de la estructura quita el pasador de bloqueo de la estructura del agujero de bloqueo en la caja de torsión. Girar la manija del cable de bloqueo de la estructura 90° en cualquier dirección bloquea la posición del pasador de bloqueo de la estructura.

Retiro

Vea la Figura 6-15 para el procedimiento siguiente.

NOTA: Asegure el pasador de bloqueo de la estructura (1) para evitar que caiga en el orificio de bloqueo de la caja de torsión.

Observe la trayectoria del cable de bloqueo de la estructura durante la extracción como ayuda para la instalación.

1. Retire el pasador hendido (no se muestra) del pasador de horquilla (no se muestra) y retire el segundo pasador de la horquilla (2).
2. Afloje las contratuerca (3) que aseguran el cable de bloqueo de la estructura (4) a la escuadra de bloqueo (5) y retire el cable de la escuadra.
3. Retire la contratuerca (6) por detrás de la escuadra de cabina (7) y tire del cable de bloqueo de la estructura a través de la escuadra de la cabina.

Instalación

Vea la Figura 6-15 para el procedimiento siguiente.

1. Inserte el cable de bloqueo de la estructura (4) por la escuadra de cabina (7). Instale y asegure firmemente la contratuerca (6). Pase el cable de bloqueo de la estructura a través de la cabina de la misma manera que se observó durante la extracción.
2. Inserte el cable de bloqueo de la estructura en la escuadra de bloqueo (5) y apriete firmemente las contratuerca (3).
3. Alinee la horquilla (2) con el orificio en el pasador de bloqueo de la estructura (1) e instale el pasador de horquilla (no se muestra).
4. Instale un nuevo pasador hendido (no se muestra) en el pasador de horquilla.

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pasador de bloqueo de la estructura</td>
</tr>
<tr>
<td>2</td>
<td>Horquilla</td>
</tr>
<tr>
<td>3</td>
<td>Contratuerca de cable de bloqueo de la estructura (cant. 2)</td>
</tr>
<tr>
<td>4</td>
<td>Cable de bloqueo de la estructura</td>
</tr>
<tr>
<td>5</td>
<td>Escuadra de bloqueo de la estructura</td>
</tr>
<tr>
<td>6</td>
<td>Contratuerca</td>
</tr>
<tr>
<td>7</td>
<td>Escuadra de cabina</td>
</tr>
</tbody>
</table>

Figura 6-15
SECCIÓN 7
ESTABILIZADORES

CONTENIDO DE LA SECCIÓN

Descripción .. 7-1
Conjunto de viga de estabilizadores 7-1
 Retiro .. 7-4
 Armado ... 7-5
Tensión de cables ... 7-6
Calibración del estabilizador 7-6
 Almohadillas laterales 7-7
 Almohadillas superiores e inferiores 7-8
Sistema de monitoreo de estabilizadores (OMS) ... 7-9
 Potenciómetro en serie 7-9
Sistema de monitoreo de gatos de estabilizadores (opcional) 7-10

DESCRIPCIÓN

Los estabilizadores de dos secciones se usan para darle estabilidad a la grúa cuando la grúa está en uso. Los estabilizadores pueden usarse en la posición completamente retraida, parcialmente extendida o completamente extendida.

Al activar el cilindro de extensión del estabilizador, este extiende o retrae la viga y/o cilindros del estabilizador seleccionado. Las vigas de estabilizadores pueden extenderse a la posición intermedia girando el pasador de bloqueo a la posición de bloqueo. Cuando una viga de estabilizador alcanza la posición extendida intermedia, un pasador de bloqueo accionado por resorte se inserta automáticamente en la viga de estabilizador para asegurarlo en su lugar. Los cables internos y un cilindro hidráulico extienden y retraen las vigas de estabilizadores de dos secciones.

CONJUNTO DE VIGA DE ESTABILIZADORES

El conjunto de viga de estabilizadores se compone de lo siguiente:

 • Viga intermedia
 • Viga de gato exterior
 • Cilindros de estabilizador
 • Mangueras requeridas y tornillería de montaje
 • Cables de extensión y retracción y poleas
<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ajuste de cable superior</td>
</tr>
<tr>
<td>2</td>
<td>Viga de gato exterior</td>
</tr>
<tr>
<td>3</td>
<td>Viga intermedia</td>
</tr>
<tr>
<td>4</td>
<td>Caja de estabilizador</td>
</tr>
<tr>
<td>5</td>
<td>Pasador de bloqueo</td>
</tr>
<tr>
<td>6</td>
<td>Ajuste de cable inferior</td>
</tr>
<tr>
<td>7</td>
<td>Flotador de estabilizador</td>
</tr>
<tr>
<td>8</td>
<td>Estabilizador</td>
</tr>
<tr>
<td>9</td>
<td>Perno de anclaje de cilindro de extensión</td>
</tr>
<tr>
<td>10</td>
<td>Línea hidráulica</td>
</tr>
</tbody>
</table>

FIGURA 7-1
FIGURA 7-2

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Muñón</td>
</tr>
<tr>
<td>2</td>
<td>Cable de extensión/retracción</td>
</tr>
<tr>
<td>3</td>
<td>Ajuste de cable superior</td>
</tr>
<tr>
<td>4</td>
<td>Mangueras hidráulicas</td>
</tr>
<tr>
<td>5</td>
<td>Poleas de manguera hidráulica en punta del cilindro de extensión</td>
</tr>
<tr>
<td>6</td>
<td>Poleas de cables en punta de cilindro de extensión</td>
</tr>
<tr>
<td>7</td>
<td>Ajuste de cable inferior</td>
</tr>
<tr>
<td>8</td>
<td>Tubos hidráulicos al cilindro del estabilizador</td>
</tr>
<tr>
<td>9</td>
<td>Extender Cilindro</td>
</tr>
<tr>
<td>10</td>
<td>Escuadra de anclaje</td>
</tr>
<tr>
<td>11</td>
<td>Poleas de cable en viga de gato exterior</td>
</tr>
</tbody>
</table>
Retiro

1. Verifique que el estabilizador (1, Figura 7-1) esté completamente retraído y que se haya retirado el flotador del estabilizador (7, Figura 7-1).

2. Desconecte y quite el potenciómetro del sistema de monitoreo de estabilizadores (OMS). Vea “Sistema de monitoreo de estabilizadores (OMS)” en la página 7-9.

3. En el extremo del estabilizador, marque y retire las almohadillas de desgaste superiores y los suplementos de la viga del estabilizador.

NOTA: Las almohadillas de desgaste y suplementos de los estabilizadores se ajustan en la fábrica. Marque los suplementos y almohadillas de desgaste durante el retiro para asegurarse de instalarlos correctamente.

4. Extienda la viga del estabilizador ligeramente para permitir la fijación de una tira de levante (Figura 7-4) a la viga.

NOTA: Para evitar hacerle melladuras y acanaladuras a la parte inferior de la viga de estabilizador, no le conecte cadenas.

5. Retire las líneas hidráulicas (10, Figura 7-1) de la base del cilindro de extensión.

6. Retire la válvula de retención para permitir el movimiento de la varilla del cilindro de extensión.

7. Levante el conjunto de viga intermedia y viga de gato exterior contra la caja del estabilizador. Retire y marque la almohadilla de desgaste inferior y sus suplementos de la caja del estabilizador.

8. Marque la posición y retire las tuercas restantes de los topes del cable de proporción en la parte inferior de la caja del estabilizador.

9. Pase los cables a través de la placa de anclaje y tire de sus extremos para sacarlos por entre la caja de estabilizador y el conjunto de viga intermedia y viga de gato exterior.

10. Tire del conjunto de viga intermedia y viga de gato exterior para quitarlo de la caja del estabilizador. Compruebe que el pasador de bloqueo esté desactivado. Mantenga los cables de proporción tensos para evitar estrujar o dañar los cables durante el retiro.

11. Ponga el conjunto de viga intermedia y viga de gato exterior sobre bloques adecuados. No estruje ni aplaste los cables de proporción al elevar o soportar el conjunto.

12. Levante el muñón del cilindro de extensión para sacarlo de las cavidades de anclaje de la viga intermedia (Figura 7-2).

13. Retire los anillos elásticos del eje de la parte trasera de la viga intermedia. Retire el eje y las poleas de la viga. Pase los cables de vuelta a través de la abertura de la placa inferior de la viga de gato exterior después de haber retirado las poleas.

14. Desconecte las mangueras hidráulicas internas de las escuadras de anclaje en la parte trasera de la viga de gato exterior (Figura 7-2).

15. Saque los pernos que sujetan el anclaje del cable en la parte trasera de la viga de gato exterior y retire el conjunto del anclaje de cable.
16. Saque el cilindro de extensión del conjunto de viga intermedia y viga de gato exterior.

NOTA: Evite estrujar o aplastar las mangueras y cables durante el retiro del cilindro de extensión. Tenga cuidado al retirar el cilindro de la viga exterior porque las piezas sueltas tales como poleas de mangueras pueden caerse del eje y dañarse.

17. Coloque el cilindro sobre una superficie horizontal adecuada y retire las mangueras, poleas de cable, carretes de manguera y el eje.

18. Marque las posiciones de la tuerca de retención en los cables proporcionales y retire los cables de la placa de tope del cilindro. Coloque los cables en una zona segura para evitar dañarlo.

19. Retire y marque las cuatro almohadillas de desgaste laterales y suplementos de la parte delantera de la viga intermedia.

20. Eleve el estabilizador de la viga de gato exterior contra la almohadilla superior del estabilizador de la viga intermedia. Retire y marque la almohadilla de desgaste inferior entre la viga intermedia y la viga de gato exterior.

21. Quite la viga de gato exterior de la viga intermedia y póngala sobre bloques adecuados. De ser necesario, quite y marque las almohadillas de desgaste y los suplementos de la viga de gato exterior.

22. Desconecte y retire los tubos hidráulicos del cilindro de estabilizador.

23. Soporte el cilindro estabilizador debidamente por su parte inferior con un gato o eslinga y retire la válvula de retención y anillos “O”.

24. Saque los pernos y la placa de bloqueo del tubo del estabilizador.

25. Con el cilindro soportado con algún medio auxiliar, deslice la placa retenedora para sacarla de debajo de la placa de tope del cilindro.

27. Retire los anillos de desgaste instalados en las ranuras de las patas de soporte inferiores del cilindro.

Armado

NOTA: Para armar los estabilizadores, efectúe el procedimiento siguiente:

- Siempre utilice las contratuerca enroscando la primera tuerca más allá de la parte plana para poder efectuar ajustes posteriormente.

- No aplique pasta Loctite a ninguno de los extremos roscados de cables.

- Aplique pasta selladora Loctite a todos los demás pernos.

- Vuelva a instalar las almohadillas de desgaste nuevas, reajuste las almohadillas y suplementos.

1. Instale los tubos hidráulicos del estabilizador en la viga exterior.

2. Instale los anillos de desgaste en la pata del estabilizador.

3. Inserte el cilindro dentro del tubo del estabilizador.

4. Deslice la placa retenedora debajo del extremo de tope del cilindro del estabilizador.

5. Instale la placa de bloqueo y sus pernos (3, Figura 7-5).

6. Instale la válvula de retención en el cilindro del estabilizador.

7. Instale los adaptadores y tubos hidráulicos en la válvula de retención.

8. Instale las almohadillas de desgaste y suplementos en la viga de gato exterior.

9. Ponga la viga intermedia sobre bloques adecuados y deslice la viga de gato exterior en la viga intermedia hasta que la viga de gato exterior se detenga.

10. Instale las almohadillas de desgaste laterales y suplementos entre la viga de gato exterior y la viga intermedia. Eleve la viga de gato exterior e instale las almohadillas de desgaste delanteras inferiores y los suplementos.

11. Instale la polea del cable de proporción con su eje y carretes de manguera en el cilindro de extensión. Instale los cables y mangueras y deje colgar el excedente en la zona para evitar que sufran daños.
12. Inserte el cilindro de extensión en el conjunto de viga intermedia y viga de gato exterior. Tenga cuidado para evitar estropear los cables y mangueras.

13. Levante el cilindro para obtener acceso al anclaje de cables e instale los adaptadores en el conjunto de la placa de anclaje. Conecte las mangueras del cilindro del estabilizador.

14. Instale el tope del cable de proporción en el anclaje de cables e instale el anclaje en la viga de gato exterior.

15. Instale los adaptadores para los tubos hidráulicos del cilindro del estabilizador en el anclaje de cables.

16. Pase los cables a través del agujero de la polea en la parte inferior de la viga de gato exterior. Pase los cables alrededor de la polea doble e instale la polea, el eje y los anillos elásticos.

17. Baje el muñón del cilindro para meterlo en la cavidad de la viga intermedia.

18. Con el conjunto de viga intermedia y viga de gato exterior sobre bloques adecuados, instale las almohadillas de desgaste y suplementos.

19. Conecte los cables, adaptadores y mangueras en la placa de tope del cilindro. Podría ser necesario ajustar el largo del cilindro para poder efectuar el armado.

20. Deslice el conjunto de viga intermedia y viga de gato exterior en la caja del estabilizador. Tenga cuidado para no dañar los cables que se deslizan debajo de la viga intermedia. Podría ser necesario elevar el conjunto de viga intermedia y viga de gato exterior para instalar los extremos de los cables en los puntos de anclaje de la parte inferior de la caja de estabilizadores. Guíe los extremos de cable entre la caja de estabilizadores y el conjunto de viga intermedia y viga de gato exterior de vuelta por los puntos de anclaje. Instale las tuercas hexagonales del anclaje en las posiciones que se marcaron previamente.

21. Empuje el conjunto de viga intermedia y viga de gato exterior en la caja de estabilizadores hasta que la placa de tope del cilindro de extensión alcance el extremo de la caja de estabilizadores. Emperne el extremo de tope del cilindro de extensión al extremo de la caja del estabilizador.

22. Instale las líneas hidráulicas y la válvula de retención en el cilindro de extensión.

23. Instale las almohadillas de desgaste laterales e inferior y sus suplementos.

24. Instale y conecte el potenciómetro del sistema de monitorización de estabilizadores (OMS). Vea “Sistema de monitorización de estabilizadores (OMS)” en la página 7-9.

TENSIÓN DE CABLES

1. Con los estabilizadores armados, accione los estabilizadores y el estabilizador sencillo delantero extendiéndolos y retrayéndolos completamente por cinco ciclos completos para purgar el aire de los cilindros.

2. Retraiga los estabilizadores completamente.

3. Mire a través del agujero del extremo de la caja del estabilizador para determinar la posición de la viga. En posición completamente retraída:
 a. La base de la viga intermedia topa con la base de la caja de estabilizadores.
 b. La base de la viga de gato exterior topa con las placas del anclaje del cable de poleas en la base del estabilizador de la viga intermedia.

4. Si las vigas del estabilizador no topan de la manera arriba descrita:
 a. Suelte el ajuste del cable superior si la viga intermedia no topa con la caja de estabilizadores.
 b. Suelte el ajuste del cable inferior si la viga de gato exterior no topa con la viga intermedia.

5. Después de haber soltado los cables para permitir la retracción completa, apriete los cables a un par de apriete de 40 a 47 Nm (30 a 35 lb pie) por medio de:
 a. Apretar los cables inferiores.
 b. Apretar los cables superiores a una tensión igual que los cables inferiores.

6. Revise la proporción adecuada de los estabilizadores cuando se extienden y la posición correcta cuando se retraen.

CALIBRACIÓN DEL ESTABILIZADOR
Almohadillas laterales

1. Con un compás de espesores interiores/exteriores, mida el ancho interior del estabilizador de la sección exterior (Wi, Figura 7-7) en la ubicación de la almohadilla delantera y 3 pies más atrás desde la parte delantera de la sección y anote la medida más pequeña.

NOTA: El método de calibración es el mismo para ambas secciones del estabilizador.

2. Utilice el compás de calibres interiores/exteriores para medir el ancho exterior de la sección interior correcta (W0, Figura 7-8) en la parte trasera de la sección y a 3 pies de la parte trasera. Anote la medición más grande.

3. Mida y anote el grosor de las almohadillas de desgaste (twp, Figura 7-9).

4. Reste el ancho exterior más grande (W0, Figura 7-8) de la sección interior y el grosor de las dos almohadillas (twp, Figura 7-9) del ancho interior de la sección exterior (Wi, Figura 7-7). Añada suplementos según se requiera (cada suplemento mide 0.8 mm o 1.5 mm [0.03 pulg o 0.06 pulg] de grosor) para ajustar las almohadillas de modo que haya una separación de 0 a 1.5 mm (0.00 a 0.06 pulg) entre la parte más ancha de la sección interior del estabilizador y la parte más angosta de la sección exterior del estabilizador con los suplementos y las almohadillas instalados. Consulte la Figura 7-10 y la Tabla 7-1 para ver ejemplos.

5. Repita el procedimiento cuando instale la viga intermedia y la viga de gato exterior en las cajas de estabilizadores en la base inferior.
Tabla 7-1. Separación de almohadilla de desgaste lateral

<table>
<thead>
<tr>
<th>Dimensión</th>
<th>mm</th>
<th>(pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_i (Ancho interior más pequeño)</td>
<td>306.3</td>
<td>12.06</td>
</tr>
<tr>
<td>$-W_o$ (Ancho exterior más grande)</td>
<td>279.4</td>
<td>11</td>
</tr>
<tr>
<td>$-t_{wp}$ (Grosor de almohadilla de desgaste lateral, total)</td>
<td>26.4</td>
<td>1.04</td>
</tr>
<tr>
<td>Separación = $W_i - W_o - t_{wp}$</td>
<td>0.5</td>
<td>0.02</td>
</tr>
<tr>
<td>Especificación de separación lateral</td>
<td>0 a 1.5</td>
<td>0 a 0.06</td>
</tr>
</tbody>
</table>

Almohadillas superiores e inferiores

1. Con un compás de espesores interiores/exteriores, mida y anote la altura interior de la sección exterior (H_i, Figura 7-11) a 3 pies de la parte delantera de la sección.
2. Utilice el compás de espesores interiores/exteriores para medir y anotar la altura exterior de la sección interior (Ho, Figura 7-12) en la parte trasera de la sección desde la placa superior hasta la parte inferior de las almohadillas inferiores.

3. Mida y anote el grosor de las almohadillas de desgaste superiores que están instaladas en la sección interior (twp, Figura 7-13).

4. Reste la altura exterior (H0, Figura 7-12) de la sección interior y el grosor de las almohadillas superiores (twp, Figura 7-13) de la altura interior (Hi, Figura 7-11) de la sección exterior. Añada suplementos según se requiera (cada suplemento mide 0.8 mm o 1.5 mm [0.03 pulg o 0.06 pulg] de grosor) para ajustar las almohadillas de modo que haya una separación de 0.08 a 1.5 mm (0.003 a 0.006 pulg) entre la parte más ancha de la sección interior del estabilizador y la parte más angosta de la sección exterior del estabilizador con los suplementos y las almohadillas instalados.

5. Instale la sección del estabilizador interior en la sección del estabilizador exterior. El grosor nominal de 19 mm (0.75 pulg) de la almohadilla delantera inferior y el suplemento debe permitir que la sección interior del estabilizador se extienda paralela a la sección exterior del estabilizador. Si se requieren ajustes, eleve la sección interior del estabilizador y ajuste los suplementos delanteros inferiores para nivelar la extensión de la sección del estabilizador. Coloque suplementos en las almohadillas de desgaste delanteras superiores según se requiera para alcanzar una separación total de 0.8 a 1.5 mm (0.03 a 0.09 pulg) entre las secciones.

6. Repita este procedimiento cuando instale los estabilizadores de la viga intermedia y la viga de gato exterior en las cajas de estabilizadores en la base inferior.

SISTEMA DE MONITOREO DE ESTABILIZADORES (OMS)

El OMS ayuda al operador a programar el limitador de capacidad nominal (RCL) con precisión por medio de identificar automáticamente la posición de cada viga de estabilizador. El OMS utiliza cuatro potenciómetros en serie, con un potenciómetro (1, Figura 7-14) montado en cada viga de estabilizador. La información se utiliza para identificar si la viga de estabilizador se encuentra en una de tres posiciones predefinidas, incluyendo completamente retraida, medianamente extendida y completamente extendida.

Potenciómetro en serie

Retiro

1. Retraiga completamente la viga del estabilizador.
2. Retire los pernos de la cubierta de la caja de estabilizadores y quite la cubierta de la caja de estabilizadores.
3. Desconecte la pinza de resorte del punto de conexión en la viga del estabilizador.
4. Desconecte el conector eléctrico del potenciómetro en serie.
5. Retire los pernos que aseguran el potenciómetro en serie en la cubierta de la caja del estabilizador.
6. Retire el potenciómetro en serie de la cubierta de la caja del estabilizador.
Instalación
1. Retraiga completamente la viga del estabilizador.
2. Instale el potenciómetro en serie en la cubierta de la caja de estabilizadores y vuelva a instalar los pernos. Apriete firmemente los pernos.
3. Conecte el conector eléctrico en el potenciómetro en serie.
4. Conecte la pinza de resorte en el punto de conexión en la viga del estabilizador.
5. Instale la cubierta en la caja de estabilizadores. Apriete firmemente los pernos.

Calibración
La calibración de los potenciómetros en serie se hace a través del limitador de capacidad nominal (RCL) de la grúa. Consulte el Manual del operador del limitador de capacidad nominal para instrucciones más detalladas.

SISTEMA DE MONITOREO DE GATOS DE ESTABILIZADORES (OPCIONAL)

El sistema de monitoreo de gatos de estabilizadores funciona en conjunto con el sistema de monitoreo de estabilizadores (OMS) y detecta la ubicación de cada viga de estabilizador, la posición de cada gato vertical, en la que la pluma está guardada en el soporte de la pluma, el estado de aplicación del freno de estacionamiento del chasis del camión y la nivelación de los estabilizadores para permitir el funcionamiento dentro de la especificación de nivel permisible.

Este sistema consta de varios sensores y módulos ubicados en toda la máquina:
- Potenciómetros en serie de estabilizadores que se utilizan en el sistema estándar de monitoreo de estabilizadores (OMS)
- Módulo de interbloqueo de elevación aérea ubicado dentro de la caja de torsión cerca de los controladores de estabilizadores del lado del pasajero (vea la Figura 6-13)
- Inclinómetro de tres ejes ubicado en la torreta de la grúa (vea la Figura 6-11)
- Sensor de posición de giro (2, Figura 6-12) ubicado en el interior del anillo colector eléctrico.
- Interruptor del freno de estacionamiento del chasis del camión ubicado en la interfaz del chasis del camión (J1939 CAN)
- Alarma de movimiento del estabilizador (OMA) ubicada en la parte trasera de la máquina (7, Figura 9-21)
- Sensor de ángulo de la pluma ubicado en el interior del carrete de cable de largo y ángulo del sistema de RCL (2, Figura 3-1)

Arranque
Al girar el interruptor con llave de la cabina del operador a la posición de encendido, el sistema de monitoreo de gatos de estabilizadores comienza a detectar la configuración de la máquina. El motor del camión debe arrancarse dentro de aproximadamente 30 segundos después del encendido para que todos los sensores se enciendan y se comuniquen con el módulo de interbloqueo de elevación aérea.

Emplazamiento de estabilizadores
Los estabilizadores se pueden emplazar y nivelar según las instrucciones de funcionamiento, y el RCL se puede configurar para que coincida con la configuración actual de la grúa. El sistema de monitoreo de gatos de estabilizadores no permitirá el funcionamiento de las funciones de la grúa hasta que:
1. Los gatos de estabilizadores se extiendan.
2. La pluma descanse en el apoyo de pluma.
3. Los estabilizadores estén nivelados.

Si se permite el funcionamiento, la alarma de movimiento de estabilizadores se activará y emitirá dos pitidos de tono bajo seguidos por uno más alto que indicará que las funciones de la pluma están listas para su funcionamiento.

Durante el funcionamiento
Una vez que se habilitan las funciones de la pluma, se operan normalmente según las instrucciones de funcionamiento. El sistema de monitoreo de gatos de estabilizadores monitorea el estado del sensor de nivelación en tiempo real durante el funcionamiento y permite una gama completa de
funcionamiento. Si el sensor indica que la máquina no está nivelada de acuerdo con las especificaciones, sonará la alarma de movimiento de estabilizadores (OMA), lo cual indica una condición fuera de nivel. Cuando suena esta alarma, todas las funciones de la pluma permanecen activas para permitir que el operador nivele la máquina y pueda devolver la pluma al apoyo de la pluma y nivelar la máquina nuevamente.

Localización de averías

Hay varias configuraciones de software, llamadas EEPROM, que deben calibrarse en la configuración inicial del sistema de monitoreo de gatos de estabilizadores. Estas normalmente se configuran en fábrica y no requieren ajustes. Si falta algún sensor, si se ha cambiado alguno recientemente o si cualquiera no funciona correctamente, esto podría provocar la desactivación de las funciones de la pluma. Los sensores y la configuración del software relacionado con estos sensores incluyen:

1. Potenciómetros en serie de estabilizadores (cant. 4)
2. Módulo de interbloqueo de elevación aérea ubicado dentro de la caja de torsión cerca de los controladores de estabilizadores del lado del pasajero (vea la Figura 6-13).
3. Inclinómetro de tres ejes ubicado en la torreta de la grúa (vea la Figura 6-11).
4. Sensor de giro (2, Figura 6-12) ubicado en el interior del anillo colector eléctrico
5. Interruptor del freno de estacionamiento del chasis del camión ubicado en la interfaz del chasis del camión (J1939 CAN).
6. Sensor de ángulo de la pluma ubicado en el interior del carrete de cable de largo y ángulo del sistema de RCL (2, Figura 3-1).

Si se requieren diagnósticos o cambios a esta configuración del software necesita una computadora con sistema operativo Windows, el software de servicio HED, el software de servicio CAN-Link y el cable diagnóstico. Para obtener más información, consulte Herramientas para localización de averías, página 3-2.
ESTA PÁGINA HA SIDO DEJADA EN BLANCO INTENCIONALMENTE
SECCIÓN 8
LUBRICACIÓN

CONTENIDO DE LA SECCIÓN

Generalidades .. 8-1
Protección ambiental 8-1
Lubricantes ... 8-1
Condiciones árticas inferiores a –9°C (15°F) 8-2
Grasa para chasis 8-2
Grasa para temperaturas bajas 8-2
Lubricante universal para engranajes de
presión extrema (EPGL) 8-2
Lubricante para engranajes destapados 8-2
Anticongelante/refrigerante
(para el calefactor de cabina) 8-2
Aditivos antidesgaste 8-2
Aceite hidráulico 8-3
Aceite hidráulico estándar 8-3
Aceite hidráulico ártico 8-3
Inspección del aceite hidráulico 8-3
Lubricación .. 8-3
Lubricación de poleas de cables internos 8-7
Lubricación de almohadillas de desgaste
laterales e inferiores de la pluma 8-7
Lubricación de la almohadilla de desgaste
superior de la pluma 8-7
Lubricación de viga de estabilizador 8-8
Aceite de freno del malacate 8-8
Aceite del mecanismo de malacate 8-8
Aceite de freno y freno de giro 8-9
Nivel de aceite hidráulico en depósito 8-9
Aire acondicionado 8-10
Lubricación del cable 8-10
Inhibidor de oxidación Carwell® 8-11
Protección de las grúas contra la oxidación 8-11
Procedimientos de limpieza 8-12
Inspección y reparación 8-12
Aplicación .. 8-13
Áreas de aplicación 8-13

GENERALIDADES

Es importante seguir el procedimiento de lubricación designado para asegurar una utilización y duración máximas de la grúa. Los procedimientos y tablas de lubricación de esta sección incluyen información sobre los tipos de lubricantes utilizados, la ubicación de los puntos de lubricación y la frecuencia de lubricación. La información incluida en esta sección no incluye los requisitos de lubricación del chasis del camión. Consulte el manual adecuado del fabricante del camión para ver esta información.

Los intervalos de servicio especificados corresponden al funcionamiento normal en donde prevalecen una temperatura, humedad y condiciones atmosféricas moderadas. En áreas de condiciones extremas, se deben cambiar las especificaciones de lubricación y los períodos de servicio para cumplir con las condiciones existentes. Para información sobre lubricación para condiciones extremas, comuníquese con su distribuidor local de National Crane o Manitowoc Crane Care.

Protección ambiental

¡Elimine los residuos de manera correcta! La eliminación incorrecta de residuos puede ser una amenaza para el medioambiente.

Los residuos potencialmente dañinos para el medioambiente que se usan en las grúas Manitowoc Crane incluyen, entre otros, aceite, combustible, grasa, refrigerante, refrigerante del aire acondicionado, filtros, baterías y trapos que hayan entrado en contacto con tales sustancias dañinas para el medioambiente.

Manipule y elimine los residuos siguiendo las normativas ambientales locales, estatales y federales.

Cuando llene y vacíe los componentes de la grúa, siga lo siguiente:

• No vierta fluidos residuales en el suelo, en ningún desagüe o en ninguna fuente de agua.
• Vacíe siempre los fluidos residuales en recipientes a prueba de fugas que indiquen claramente lo que contienen.
• Use siempre un embudo o una bomba de llenado para llenar o añadir fluidos.
• Limpie inmediatamente cualquier derrame.

Lubricantes

Aquí no se hacen recomendaciones específicas acerca de las marcas y los grados de lubricantes debido a los factores de disponibilidad local, condiciones de funcionamiento y el mejoramiento continuo de los productos disponibles. Para obtener más información, comuníquese con su distribuidor de National Crane o con Manitowoc Crane Care.
Condiciones árticas inferiores a –9°C (15°F)
En general, los líquidos a base de petróleo desarrollados especialmente para servicio a temperaturas bajas pueden ser utilizados con resultados satisfactorios. Sin embargo, es posible que ciertos líquidos como hidrocarburos halogena-dos, hidrocarburos de nitrógeno y líquidos hidráulicos de éster de fosfato no sean compatibles con las bandas de des-gaste y los sellos del sistema hidráulico. Si tiene alguna duda acerca de la idoneidad de un fluido específico, consulte con su distribuidor autorizado de National Crane o con Manitowoc Crane Care.

NOTA: Todos los líquidos y lubricantes pueden adquirirse del Departamento de repuestos de Manitowoc Crane Care.

Independientemente de la viscosidad del aceite y la temperatura, siempre utilice procedimientos de arranque adecua-dos para asegurar una lubricación apropiada durante el calentamiento del sistema.

Grasa para chasis

PRECAUCIÓN
No utilice dispositivos neumáticos de presión para apli-carle grasa al chasis, pues estos podrían dañar las grase-ras selladas.

Se debe aplicar grasa de consistencia adecuada periódica-mente y en intervalos relativamente frecuentes con pistolas engrasadoras a través de las graseras. Se recomienda un grado de viscosidad aparente mínimo de 300 SUS (segun-dos universales de Saybolt) a 38°C (100°F).

PRECAUCIÓN
La grasa universal usada durante la fabricación es hecha a base de lítio. El uso de una grasa no compatible podría ocasionar daños al equipo.

Grasa para temperaturas bajas
Esta grasa especial para temperaturas bajas retiene su plas-ticidad a –51°C (–60°F) y tiene un punto de derretido de 138°C (280°F). La grasa es un lubricante para presiones extremas y servicio severo (Lubricate Low Temp o uno equivalente).

Lubricante universal para engranajes de presión extrema (EPGL)
Este lubricante para engranajes está compuesto de modo que ofrece una capacidad elevada de carga y satisface los requisitos de las normas API-GL-5 o MIL-L-2105C. Salvo indicación contraria, se puede usar lubricante de viscosidad SAE 80W-90 para servicio todo el año. El uso en temperatu-ras bajas se restringe de la manera siguiente.

<table>
<thead>
<tr>
<th>Número de viscosidad SAE</th>
<th>Temperatura ambiente mínima</th>
</tr>
</thead>
<tbody>
<tr>
<td>75W</td>
<td>–40°C (–40°F)</td>
</tr>
<tr>
<td>80W</td>
<td>–26°C (–15°F)</td>
</tr>
<tr>
<td>85</td>
<td>–12°C (10°F)</td>
</tr>
<tr>
<td>90</td>
<td>–7°C (20°F)</td>
</tr>
<tr>
<td>140</td>
<td>+5°C (40°F)</td>
</tr>
<tr>
<td>250</td>
<td>+10°C (50°F)</td>
</tr>
</tbody>
</table>

Lubricante para engranajes destapados
Este es un lubricante adhesivo con alto contenido de grafito que ayuda a eliminar la corrosión por frrotamiento, es resis-tente al agua y forma una película lubricante seca que no atrae polvo. El lubricante satisface las especificaciones de las categorías NLGI 1-2.

Anticongelante/refrigerante (para el calefactor de cabina)
El anticongelante/refrigerante estándar llenado de fábrica tiene como propósito proveer protección contra el congela-miento hasta –36°C (–34°C) y la ebullición hasta 129°C (265°F) utilizando una tapa de presión de 15 psi.

Aditivos antidesgaste
El desgaste excesivo en el sistema puede causar la pérdida de eficiencia volumétrica y obligar a parar la máquina para darle mantenimiento. Un aceite antidesgaste eficiente pro-teje los componentes contra la formación de herrumbre, resiste la oxidación y ayuda a prevenir el desgaste.

Aceite hidráulico
El aceite del sistema hidráulico sirve como medio de trans-misión de potencia, lubricante y refrigerante. La selección del aceite adecuado es esencial para asegurar un rendimi-ento satisfactorio y prolongar la vida útil del sistema. Los factores más importantes para la selección del aceite del sis-tema hidráulico son el grado de viscosidad y los aditivos antidesgaste.

PRECAUCIÓN
Si se usa la grúa con aceite hidráulico de tipo incorrecto a temperaturas por debajo de la de congelación (menores que 0°C [32°F]), se puede dañar el cilindro de extensión.

NOTA: Cuando la grúa se va a utilizar a temperaturas de –9°C (15°F) y más bajas, siga los procedimientos en “Condiciones árticas inferiores a –9°C (15°F)” en la página 2.
Aceite hidráulico estándar

Temperatura superior a –9°C (15°F)

El aceite hidráulico estándar que se usa para el llenado en fábrica es aceite hidráulico ISO grado 46/68. Este aceite es aceptable para temperaturas de funcionamiento superiores a –9°C (15°F).

NOTA: En las máquinas provistas de plataformas con nivelación automática, es necesario usar aceites para temperaturas de servicio bajas para que las funciones de la pluma trabajen a temperaturas inferiores a –9°C (15°F).

PRECAUCIÓN

Si se usa la grúa con aceite hidráulico de tipo incorrecto a temperaturas de congelación bajo 0°C (32°F) se puede dañar el cilindro de extensión.

Aceite hidráulico ártico

Temperaturas bajas de –9°C (15°F) a –29°C (–20°F)

Para entornos más fríos aun, el fluido estándar puede sustituirse por uno a base de petróleo desarrollado específicamente para entornos fríos.

Temperaturas bajas de –40°C (–40°F) y más bajas

Los líquidos a base de petróleo desarrollados especialmente para servicio a temperaturas bajas pueden ser utilizados con resultados satisfactorios. Sin embargo, es posible que ciertos líquidos como hidrocarburos halogenados, hidrocarburos de nitrógeno y líquidos hidráulicos de éster de fosfato no sean compatibles con las bandas de desgaste y los sellos del sistema hidráulico. No se recomienda usar aceite hidráulico ártico para trabajar a temperaturas ambiente superiores a 0°C (32°F).

Si tiene alguna duda acerca de la idoneidad de un fluido específico, consulte con su distribuidor autorizado de National Crane o con Manitowoc Crane Care.

NOTA: Todos los líquidos y lubricantes pueden adquirirse del Departamento de repuestos de Manitowoc Crane Care.

Inspección del aceite hidráulico

Las condiciones ambientales y de otro tipo pueden afectar de modo significativo la condición del aceite hidráulico y los filtros. Por lo tanto, no es posible fijar intervalos específicos de servicio/cambio del aceite hidráulico, los filtros y los respiraderos del depósito hidráulico. Sin embargo, es imperativo para mantener el desempeño satisfactorio que se lleven a cabo inspecciones sobre la base de cómo y dónde se utiliza cada grúa. Los contaminantes transportados por el aire e introducidos al sistema pueden acortar significativamente la vida útil del aceite y la condición de los filtros de aceite hidráulico y respiraderos del depósito.

Bajo condiciones de funcionamiento normales, se recomienda inspeccionar el aceite hidráulico, los filtros y los respiraderos por lo menos cada 3 a 6 meses, y con mayor frecuencia bajo condiciones severas de funcionamiento. Durante la inspección, busque partículas transportadas por el aire y/o introducidas al sistema y agua que deterioran y contaminan el aceite; por ejemplo, el aceite tiene apariencia lechosa o su color ya no es de transparente a ámbar.

Observe el indicador de derivación del filtro de retorno diariamente para determinar si el contenido de contaminantes es elevado. Si el indicador llega a la zona roja, o se indica una condición de derivación, es necesario tomar una muestra del aceite hidráulico. También revise el respirador del depósito hidráulico para comprobar que no esté restringiendo el flujo del aire desde y hacia el depósito.

Para inspeccionar el aceite hidráulico, llene un recipiente pequeño de cristal con una muestra de aceite tomada del depósito y otro recipiente de cristal con aceite fresco. Permita que las muestras reposen, sin ser perturbadas, por una a dos horas. Luego, compare las muestras. Si el aceite obtenido del depósito está muy contaminado con agua, la muestra tendrá apariencia lechosa y solo tendrá una capa delgada de aceite transparente a ámbar. Si la apariencia lechosa se debe a espuma formada por aire, esta se disipará y el aceite entonces tendrá una apariencia parecida a la del aceite fresco. No olvide que el aceite empleado debe satisfacer la norma de limpieza ISO 17/14 o una más estricta, y deberá satisfacer la norma JDM J20C de John Deere. Comuníquese con su distribuidor National Crane o con Manitowoc Crane Care si tiene alguna pregunta.

LUBRICACIÓN

Se debe establecer una frecuencia regular de lubricación basada en el tiempo de funcionamiento de los componentes. El método más eficiente para cumplir con los requerimientos de lubricación es mantener un registro de tareas que indique el uso de la grúa.

PELIGRO

Bajo ninguna circunstancia se deberá permitir que personas trabajen a alturas elevadas sin utilizar medios de protección contra caídas, según lo exijan los reglamentos locales, estatales o federales.

PRECAUCIÓN

Los intervalos de lubricación dados deben usarse únicamente como guía general. Los intervalos reales deben ser formulados por el operador para que se adapten como corresponda a condiciones como ciclos de trabajo continuo y/o ambientes peligrosos.
Se deben revisar todos los niveles de aceite con la grúa estacionada en una superficie nivelada en posición de transporte y mientras el aceite está frío, a menos que se especifique lo contrario. En los puntos de verificación de tipo tapón, los niveles de aceite deben estar en el borde inferior de la lumbrera de llenado.

El exceso de lubricación de las graseras no selladas no dañará las graseras o los componentes, pero una falta de lubricación acorta la vida útil.

Se debe reemplazar las graseras que están desgastadas y no sostienen la pistola engrasadora o aquéllas que tienen una bola retenedora atascada.

Cuando se lubrican las almohadillas de desgaste o cojinetes de rotación, accione los componentes y vuelva a lubricar para asegurarse de que toda el área de contacto esté completamente lubricada.

NOTA: La tabla siguiente describe los puntos de lubricación, así como el tipo de lubricante, el intervalo de lubricación, la cantidad de lubricante y la aplicación de cada uno de estos. Cada punto de lubricación está numerado y este número corresponde al número del índice mostrado en la Figura 8-1. La descripción de los lubricantes y de los símbolos se indica en la Tabla 8-1, página 8-4.

<table>
<thead>
<tr>
<th>Tabla 8-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Símbolo</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AFC</td>
</tr>
<tr>
<td>EP-MPG</td>
</tr>
<tr>
<td>GL-5</td>
</tr>
<tr>
<td>HYDO</td>
</tr>
<tr>
<td>EP-OGL</td>
</tr>
<tr>
<td>AGMA EP-4</td>
</tr>
<tr>
<td>WRL</td>
</tr>
<tr>
<td>EO-20W-20</td>
</tr>
<tr>
<td>TES 295</td>
</tr>
</tbody>
</table>

NOTA: Los lubricantes para clima frío no ofrecen protección suficiente a temperaturas inferiores a –40°C (–40°F). Utilice calentadores de depósito hidráulico y materiales aislantes según sea necesario.
<table>
<thead>
<tr>
<th>Art.</th>
<th>Aplicación</th>
<th>Lubricante recomendado</th>
<th>Procedimiento</th>
<th>Frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Depósito de aceite hidráulico</td>
<td>Aceite hidráulico</td>
<td>Cambie/revise y llene</td>
<td>Semanalmente, según se requiera Semestralmente</td>
</tr>
<tr>
<td>2</td>
<td>Filtro de aceite, depósito de aceite hidráulico</td>
<td>Cambie o limpie</td>
<td>Después de las primeras 40 horas. Según lo indique el medidor de allí en adelante.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tapón magnético, depósito de aceite hidráulico</td>
<td>Limpie</td>
<td>En el intervalo de servicio del filtro de aceite</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Respiradero, depósito de aceite hidráulico</td>
<td>Limpie</td>
<td>Mensualmente</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pasadores de polea: Punta de pluma (cant. 5), plumín (cant. 1), aparejo de gancho (cant. 1), punta de pluma auxiliar (cant. 1)</td>
<td>EP-MPG</td>
<td>Pistola engrasadora</td>
<td>Semanalmente</td>
</tr>
<tr>
<td>6</td>
<td>Pasador de pivote de la pluma</td>
<td>EP-MPG</td>
<td>Pistola engrasadora</td>
<td>Mensualmente</td>
</tr>
<tr>
<td>7</td>
<td>Pasadores de cilindro de elevación (cant. 2)</td>
<td>EP-MPG</td>
<td>Pistola engrasadora</td>
<td>Mensualmente</td>
</tr>
</tbody>
</table>

FIGURA 8-1
<table>
<thead>
<tr>
<th>Art.</th>
<th>Aplicación</th>
<th>Lubricante recomendado</th>
<th>Procedimiento</th>
<th>Frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Cojinete de plataforma de giro</td>
<td>EP-MPG</td>
<td>Pistola engrasadora</td>
<td>Semanalmente</td>
</tr>
<tr>
<td>9</td>
<td>Juntas universales de mando de bomba (cant. 2) (en su caso) o eje estriado</td>
<td>Grasa para chasis 200S</td>
<td>Pistola engrasadora o</td>
<td>Después de las primeras 100</td>
</tr>
<tr>
<td></td>
<td>de bomba (montaje directo)</td>
<td>Silver Streak Special</td>
<td>aplique directo cuando</td>
<td>horas de funcionamiento</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-Lube (liviana)</td>
<td>se desarma la unidad</td>
<td>Semanalmente</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semestralmente</td>
</tr>
<tr>
<td>10a</td>
<td>Mecanismo de malacates principal y auxiliar</td>
<td>GL-5</td>
<td>Revisión y llenado</td>
<td>Revise y llene: Como parte de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cambio</td>
<td>la inspección diaria, revise el</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mecanismo para ver si hay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fugas visibles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cambie: Cada 1000 horas o 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>meses de uso.</td>
</tr>
<tr>
<td>10b</td>
<td>Freno del malacate</td>
<td>EO-20W-20 o TES295</td>
<td>Revisión y llenado</td>
<td>Revise y llene: Como parte de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cambio</td>
<td>la inspección diaria, revise el</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mecanismo para ver si hay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fugas visibles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cambie: Cada 1000 horas o 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>meses de uso.</td>
</tr>
<tr>
<td>11</td>
<td>Mecanismo del mando de giro</td>
<td>GL-5</td>
<td>Revisión y llenado</td>
<td>Revise y llene: Como parte de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cambio</td>
<td>la inspección diaria, revise el</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mecanismo para ver si hay</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fugas visibles.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cambie: Después de las pri-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>meras 50 horas y cada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500 horas de uso después</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>de eso.</td>
</tr>
<tr>
<td>12</td>
<td>Dientes del engranaje de giro</td>
<td>EP-OGL</td>
<td>Lata pulverizadora</td>
<td>Mensualmente</td>
</tr>
<tr>
<td>13</td>
<td>Plumín de pluma</td>
<td>EP-MPG</td>
<td>Brocha, rodillo o pistola engrasadora</td>
<td>Mensualmente o según se requiera</td>
</tr>
<tr>
<td>14</td>
<td>Vigas de estabilizador, parte inferior, costados</td>
<td>EP-MPG</td>
<td>Brocha o rodillo</td>
<td>Mensualmente o según se requiera</td>
</tr>
<tr>
<td>15</td>
<td>Cable</td>
<td>EP-OGL</td>
<td>Brocha o rocío</td>
<td>Semestralmente</td>
</tr>
<tr>
<td>16</td>
<td>Tamiz de difusor, depósito de aceite hidráulico</td>
<td></td>
<td>Limpieza</td>
<td>Semestralmente al cambiar el</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>aceite</td>
</tr>
<tr>
<td>17a</td>
<td>Poleas de extensión: Sección TEL N.° 1, plumas de 127 pies y 142 pies, a</td>
<td>Grasa para chasis 200S</td>
<td>Pistola engrasadora</td>
<td>Semanalmente</td>
</tr>
<tr>
<td></td>
<td>cada lado</td>
<td>Silver Streak Special</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-Lube (liviana)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17b</td>
<td>Poleas de extensión: Sección TEL N.° 3, plumas de 127 pies y 142 pies, a</td>
<td>Grasa para chasis 200S</td>
<td>Pistola engrasadora</td>
<td>Semanalmente</td>
</tr>
<tr>
<td></td>
<td>cada lado</td>
<td>Silver Streak Special</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Multi-Lube (liviana)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Poleas de retracción: extienda la pluma hasta que las graseras de las</td>
<td>Grasa para chasis 200S</td>
<td>Pistola engrasadora</td>
<td>Semanalmente</td>
</tr>
<tr>
<td></td>
<td>poleas de retracción queden visibles por los agujeros de acceso en el</td>
<td>Silver Streak Special</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>centro de la pluma.</td>
<td>Multi-Lube (liviana)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Cables de extensión de plumín (no se ilustran)</td>
<td>WRL</td>
<td>Roció o brocha</td>
<td>Siempre que la pluma se desarme o cada 5 años</td>
</tr>
<tr>
<td>20</td>
<td>Almohadillas de desgaste de la pluma</td>
<td>EP-MPG</td>
<td>Vea Lubricación de la</td>
<td>Mensualmente o según se requiera</td>
</tr>
<tr>
<td>21</td>
<td>Rodillos de cable o manguera</td>
<td>SAE 10</td>
<td>Aceitera</td>
<td>Trimestralmente</td>
</tr>
<tr>
<td>22</td>
<td>Depósito de calefactor de cabina</td>
<td>AFC</td>
<td>Revisión y llenado</td>
<td>Semanalmente o según se</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vaciado</td>
<td>requiera</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semestralmente</td>
</tr>
<tr>
<td>23</td>
<td>Cojinete de adaptador giratorio de aparejo de gancho</td>
<td>EP-MPG</td>
<td>Pistola engrasadora</td>
<td>Mensualmente</td>
</tr>
</tbody>
</table>
Lubricación

<table>
<thead>
<tr>
<th>Art.</th>
<th>Aplicación</th>
<th>Lubricante recomendado</th>
<th>Procedimiento</th>
<th>Frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Poleas del aparejo de gancho</td>
<td>EP-MPG</td>
<td>Pistola engrasadora</td>
<td>Mensualmente</td>
</tr>
<tr>
<td>25</td>
<td>Pasador de bloqueo de giro de plataforma de giro</td>
<td>EP-MPG</td>
<td>Rocío</td>
<td>Mensualmente</td>
</tr>
<tr>
<td>26a</td>
<td>Aire acondicionado</td>
<td>Aceite de polialquileno (PAG)</td>
<td>Revise y llene con 4 onzas sobre las 6 onzas en el compresor</td>
<td>Cada vez que el aire acondicionado se desconecta o se le da servicio</td>
</tr>
<tr>
<td>26b</td>
<td>Refrigerante del aire</td>
<td>R-134a</td>
<td>2 lb</td>
<td>Cada vez que el aire acondicionado se desconecta, se le da servicio o según se necesite</td>
</tr>
</tbody>
</table>

NOTA: Lubrique con mayor frecuencia que lo indicado en la tabla si las condiciones ambientales y/o las condiciones de trabajo lo hacen necesario.
LUBRICACIÓN

Lubricación de poleas de cables internos

PELIGRO
Bajo ninguna circunstancia se deberá permitir que personas trabajen a alturas elevadas sin utilizar medios de protección contra caídas, según lo exijan los reglamentos locales, estatales o federales.

La lubricación de las poleas de extensión y de retracción es como sigue.
1. Ubique las graseras según se listan en la Tabla 8-1.
2. Lubrique los pasadores hasta que una pequeña cantidad de grasa salga del pasador.

Lubricación de almohadillas de desgaste laterales e inferiores de la pluma

PELIGRO
Bajo ninguna circunstancia se deberá permitir que personas trabajen a alturas elevadas sin utilizar medios de protección contra caídas, según lo exijan los reglamentos locales, estatales o federales.

Se recomienda usar la grasa EP-3MG recomendada.
1. Extienda y ajuste los estabilizadores completamente.
2. Baje la pluma a la posición horizontal.
3. Extienda por completo la pluma y aplique grasa en todas las superficies de contacto de las almohadillas de desgaste en la parte lateral e inferior de todas las secciones de la pluma, usando una brocha o una espátula.
4. Eleve la pluma a 75° y retráigala.
5. Extienda y retraiga la pluma varias veces para esparrigar la grasa de modo uniforme.
6. Repita según sea necesario.

Lubricación de viga de estabilizador

PELIGRO
Bajo ninguna circunstancia se deberá permitir que personas trabajen a alturas elevadas sin utilizar medios de protección contra caídas, según lo exijan los reglamentos locales, estatales o federales.

Se recomienda usar la grasa EP-3MG recomendada.
2. Aplique grasa a todas las almohadillas de desgaste y a todas las superficies de contacto en las partes lateral e inferior de todas las secciones de la viga y en la superficie inferior del estabilizador/gatos con una brocha o una espátula adecuada.
3. Extienda y retraiga los estabilizadores varias veces para esparrigar la grasa de modo uniforme.
4. Repita según sea necesario.

PELIGRO
Bajo ninguna circunstancia se deberá permitir que personas trabajen a alturas elevadas sin utilizar medios de protección contra caídas, según lo exijan los reglamentos locales, estatales o federales.

FIGURA 8-2
Aceite de freno del malacate

PELIGRO

Bajo ninguna circunstancia se deberá permitir que personas trabajen a alturas elevadas sin utilizar medios de protección contra caídas, según lo exijan los reglamentos locales, estatales o federales.

Revisión del aceite de freno del malacate

Para revisar el aceite de freno del malacate, saque el tapón de inspección (2, Figura 8-3) e inspeccione el nivel de aceite visualmente. El aceite deberá estar visible hacia el fondo del agujero de inspección. Si se necesita más aceite, agregue a través del agujero del tapón de ventilación/llenado (1) hasta que el aceite esté en el nivel inferior del agujero de inspección.

Vaciado/adición de aceite nuevo de freno del malacate

Para vaciar y añadir aceite nuevo:

1. Retire el tapón de vaciado (3, Figura 8-3), tapón de inspección (2) y tapón de ventilación/llenado (1).
2. Vacíe el aceite de freno.
3. Vuelva a instalar el tapón de vaciado (3) y añada aceite por el agujero de ventilación de aceite de freno (1) hasta el nivel inferior del agujero de inspección (2). La capacidad de llenado del freno de malacate es 0.23 l (0.25 qt).
4. Instale el tapón de inspección (2) y el tapón de ventilación/llenado del aceite (1).

NOTA: Los lubricantes de freno son satisfactorios para trabajos a temperaturas de –23°C a 66°C (–10°F a +150°F). Para trabajar fuera de esta gama, comuníquese con Manitowoc Crane Care para las recomendaciones del caso.

Aceite del mecanismo de malacate

PELIGRO

No utilice lubricantes tipo EP para engranajes en la sección de freno. Esto podría estorbar el funcionamiento correcto y causar la caída de la carga, lo cual puede dar por resultado lesiones graves o mortales.

Revise el nivel de aceite del mecanismo del malacate

1. Gire el tambor hasta que el tapón de llenado/nivel de aceite (1, Figura 8-4) sea visible en el agujero de inspección.
2. Retire el tapón de llenado/nivel (1) e inspeccione visualmente el nivel de aceite. El aceite debería estar al mismo nivel que el fondo del agujero de llenado/inspección. Si se necesita más aceite, agregue aceite. (Consulte la Figura 8-3).
3. Instale el tapón de llenado/nivel (1).

Para llenar el mecanismo del malacate con aceite

1. Para llenar con aceite, gire el tambor de manera que el tapón de llenado/nivel (1, Figura 8-4) del mecanismo sea visible a través del agujero superior.
2. Retire el tapón de llenado/nivel (1) con una llave de cuchillo hexagonal.
3. Instale un tubo de 1 pulg con codo en el agujero de llenado (1) para ayudar a llenar con aceite.
4. Retire el tapón de ventilación (3) para ayudar a llenar con aceite.
5. Llene el mecanismo con 3.3 l (3.50 qt) de aceite lubricante para engranajes o hasta que el aceite llegue al nivel inferior del agujero de inspección. (Vea la Figura 8-4.)
Para vaciar y llenar el mecanismo del malacate con aceite

1. Para vaciar y añadir aceite nuevo, retire el tapón de ventila-ción (3, Figura 8-4) como ayuda para vaciar el aceite.
2. Retire el tapón de llenado/nivel (1) con una llave de casquillo hexagonal.
3. Retire el tapón de vaciado (2) con una llave de casquillo hexagonal.
4. Enrosque un tubo de 1 pulg en el agujero del tapón de vaciado para ayudar a vaciar el aceite.
5. Vacíe el aceite.
6. Retire el tubo de vaciado de 1 pulg.
7. Instale el tapón de vaciado de aceite (2).
8. Instale un tubo de 1 pulg con codo en el agujero de llenado (1) para ayudar a llenar con aceite.
9. Llene el mecanismo con 3.3 l (3.50 qt) de aceite lubricante para engranajes o hasta que el aceite llegue al nivel inferior del agujero de inspección. (Consulte la Figura 8-4).
10. Saque el tubo de llenado de 1 pulg.
11. Instale el tapón de llenado/nivel (1).
12. Instale el tapón de ventilación (3)

Los lubricantes para engranajes de malacate son satisfactorios para trabajos a temperaturas de –23°C a 66°C (–10°F a +150°F). Para trabajar fuera de esta gama, comuníquese con Manitowoc Crane Care para las recomendaciones del caso.

Aceite de mecanismo y freno de giro

Revise el nivel de aceite del mecanismo de giro

Consulte Puntos de lubricación para ver el tipo de lubricación y la frecuencia de mantenimiento. El aceite del mecanismo se vacía retirando el tapón de vaciado y el tapón de llenado/ventilación para facilitar el vaciado (consulte la Figura 8-5).

1. Examine el aceite usado en busca de señales de depósitos de metal significativos y luego deséchelo de una manera apropiada.
2. Instale el tapón de vaciado.
3. Llene el mecanismo de giro con la cantidad y tipo de aceite adecuados y luego instale el tapón de llenado/ventilación. Vea “Lubricación” en la página 8-3.

El nivel de aceite del mecanismo se puede inspeccionar retirando el tapón de llenado/ventilación del mecanismo e inspeccionando visualmente el nivel del aceite. El nivel máximo del aceite debe quedar 1 pulg por debajo de la lumbrera para este mecanismo con 3.3 l (3.50 qt) de aceite lubricante para engranajes.

Los lubricantes de mecanismo son satisfactorios para trabajos normales a temperaturas de –23°C a 82°C (–10°F a +180°F). Para trabajar fuera de esta gama, comuníquese con Manitowoc Crane Care para las recomendaciones del caso.

Nivel de aceite hidráulico en depósito

El depósito de aceite hidráulico tiene una mirilla (vea la Figura 8-6) ubicada en el costado del depósito. El depósito hidráulico está lleno cuando el nivel de aceite está entre las marcas de nivel alto y bajo en la mirilla con la grúa estacionada en una superficie nivelada y en posición de transporte, mientras el aceite está frío.
Si el nivel de aceite está bajo, añada el aceite hidráulico recomendado hasta que el nivel esté a ras con la marca superior. Si el nivel de aceite está demasiado alto, vacíelo hasta que esté a ras con la marca superior.

AIRE ACONDICIONADO

Cuando le dé servicio al aire acondicionado, evacúe el sistema antes de desconectar cualquier componente conectado al sistema presurizado. Vea “Acondicionador de aire” en la página 9-40 para más información.

Después de dar servicio, asegúrese de que el sistema de aire acondicionado se recargue con los tipos de refrigerante y aceite especificados en la Figura 8-1.

LUBRICACIÓN DEL CABLE

El propósito de lubricar el cable es reducir la fricción interna y evitar la corrosión. El tipo y cantidad de lubricante aplicado durante la fabricación depende del tamaño, tipo y uso anticipado del cable. Esta lubricación proporciona al cable terminado protección por un tiempo razonable si se almacena el cable en buenas condiciones. Cuando se pone el cable en servicio, es necesario aplicarle lubricante de cables adecuado periódicamente. Un buen lubricante para cable:

- Deberá estar libre de ácidos y álcalis
- Deberá tener una fuerza de adhesión suficiente para permanecer sobre el cable
- Su grado de viscosidad deberá permitirle penetrar los espacios entre los hilos y las trenzas
- No deberá ser soluble en los medios que le rodeen durante las condiciones de trabajo reales (p. ej., en agua)
- Deberá tener una resistencia elevada a las rozaduras
- Deberá ser resistente a la oxidación

Antes de aplicar el lubricante, se debe quitar la tierra acumulada y demás materiales abrasivos del cable. Limpie con un cepillo de alambre de cerdas firmes y un disolvente, aire comprimido o vapor. Lubrique el cable inmediatamente después de haberlo limpiado. Las técnicas que pueden usarse incluyen:

- Baño
- Goteo
- Vertido
- Aplicación con trapo
- Pintura
- Rocío a presión

Siempre que sea posible, aplique el lubricante en la parte superior de la curvatura de un cable, porque en ese punto las trenzas del mismo se separan por la curvatura y el lubricante penetra con mayor facilidad. El cable no deberá estar llevando carga alguna al lubricarlo. La vida útil de un cable es directamente proporcional a la eficacia del método usado para lubricarlo y de la cantidad de lubricante que alcance a los componentes de trabajo del cable.
INHIBIDOR DE OXIDACIÓN CARWELL®

Protección de las grúas contra la oxidación

Las grúas de Manitowoc Crane son fabricadas según las más altas normas de calidad, incluyendo el tipo de acabado de pintura exigido por la industria de hoy. En sociedad con nuestro proveedor de pintura, también aportamos nuestra parte para ayudar a impedir la corrosión prematura de las grúas.

Las grúas National Crane serán tratadas con un inhibidor de oxidación llamado Carwell® T32-CP-90. Aunque un inhibidor de oxidación no puede garantizar que una máquina no sufrirá corrosión, este producto ayudará a proteger contra la corrosión a las grúas National tratadas con este producto.

Carwell® es un tratamiento, no un recubrimiento. No contiene siliconas, disolventes, clorofluorocarbonos (CFC) ni nada que pudiera ser clasificado como peligroso bajo la norma 29CFR 19 10.1200 de la OSHA. El producto es una mezcla líquida de derivados del petróleo, inhibidores de oxidación, agentes repelentes de agua y dispersadores de agua.

Se utiliza equipo especial para rociar una capa delgada en todo el tren de rodaje y varias otras áreas de cada grúa nueva antes del envío. Cuando se aplica, el producto tiene un tinte de color rojo que permite a los aplicadores ver la cobertura del producto durante la aplicación. Este tinte rojo se tornará transparente en un lapso de 24 horas, aproximadamente, después de la aplicación.

Una vez aplicado, el tratamiento puede parecer que deja un residuo ligeramente “aceitoso” sobre las superficies pintadas, y hasta que el tinte rojo desaparezca, al principio esto podría confundirse erróneamente con una fuga de aceite hidráulico. A pesar de que el producto no hace daño a las superficies pintadas, al vidrio, plástico o caucho, se debe eliminar utilizando técnicas estándar de limpieza con vapor.

Este tratamiento funciona de varias maneras:

- Elimina la humedad que contiene sal, polvo y otros contaminantes levantándolos y eliminándolos de la superficie de metal
- La capa crea una barrera para repeler e impedir todavía más el contacto de la humedad con el metal
- Penetra las grietas

Además del tratamiento aplicado en fábrica, los dueños de grúas National deben proveer el mantenimiento y cuidado adecuados para asegurar la protección a largo plazo de las grúas contra la corrosión. Este procedimiento provee información y pautas para ayudar a mantener el acabado de la pintura de las grúas National.

Las causas más comunes de corrosión incluyen las siguientes:

- Sal de las carreteras, productos químicos, tierra y humedad atrapada en zonas difíciles de alcanzar
- Descascarado o desgaste de la pintura, como resultado de incidentes menores o a causa de componentes en movimiento
- Daño causado por maltrato por parte del personal, por ejemplo, el uso de las plataformas para transportar aparejos, herramientas o bloques de soporte
- Exposición a peligros ambientales severos como ambientes alcalinos, ácidos u otros productos químicos que pueden atacar el acabado de la pintura de la grúa.

A pesar de que las superficies de la grúa que son más visibles tienen un mayor impacto en la apariencia de la grúa, se debe poner especial atención al tren de rodaje de la grúa para minimizar los efectos dañinos de la corrosión.

Dé un cuidado especial y aumente la frecuencia de la limpieza si la grúa funciona:

- En carreteras con grandes cantidades de sal o calcio para tratar superficies con hielo o nieve
- En zonas que utilizan productos químicos para controlar el polvo
- En cualquier lugar donde haya niveles de humedad aumentados, especialmente cerca de agua salada
- Durante períodos prolongados de exposición bajo condiciones de humedad (por ejemplo, la humedad del barro), donde ciertas piezas de la grúa pudieran corroerse a pesar de que otras piezas permanecen secas
- En condiciones de alta humedad, o cuando las temperaturas estén apenas sobre el punto de congelación

Procedimientos de limpieza

PELIGRO

Bajo ninguna circunstancia se deberá permitir que personas trabajen a alturas elevadas sin utilizar medios de protección contra caídas, según lo exijan los reglamentos locales, estatales o federales.

Como ayuda para protección contra la corrosión de las grúas National, Manitowoc Crane Care recomienda lavar la grúa por lo menos una vez al mes para eliminar las materias extrañas. Se requiere una limpieza más frecuente cuando se trabaja bajo condiciones ambientales severas. Para limpiar la grúa, siga estas pautas:

- El agua a alta presión o vapor es eficaz para limpiar el tren de rodaje de la grúa y las cajas de las ruedas. La limpieza de estas zonas no solo ayudará a retardar los
efectos de la corrosión, sino que también ayudará a mejorar la habilidad para identificar problemas potenciales antes que se transformen en problemas más grandes.

PRECAUCIÓN
El agua a alta presión puede penetrar en espacios e infiltrarse más allá de los sellos. Evite el lavado a presión en las cercanías de controles eléctricos, tableros, alambrado, sensores, mangueras hidráulicas y adaptadores, o cualquier cosa que pudiera dañarse con la limpieza/rociado a alta presión.

- Enjuague la tierra y el polvo antes de lavar la grúa. La tierra puede rayar el acabado de la grúa durante el lavado/limpieza.
- Los puntos difíciles de limpiar a consecuencia del alquitrán o de insectos deben tratarse y limpiarse después del enjuague y antes del lavado. No use disolventes ni gasolina.
- Lave con jabones y detergentes recomendados para acabados de pintura de automóvil.
- Enjuague todas las superficies a fondo para impedir las manchas causadas por los residuos de detergente.
- Deje que la grúa se seque completamente. Se puede acelerar el secado si se utiliza aire comprimido para eliminar el exceso de agua.

NOTA: Se recomienda aplicar cera (para automóvil) y dar brillo para mantener el acabado de la pintura original.

Inspección y reparación

- Inmediatamente después de la limpieza, Manitowoc Crane Care recomienda una inspección para detectar zonas que pudieran estar dañadas debido a impactos de piedras o percances menores. Una rayadura menor (que no ha penetrado hasta la superficie de substrato) se puede pulir con un eliminador de rayaduras para automóvil. Se recomienda aplicar una buena capa de cera para automóvil a esta zona posteriormente.
- Todos los puntos y/o zonas que tienen rayaduras que llegan hasta el metal deben ser retocados y reparados tan pronto como sea posible para impedir la oxidación. Para reparar una rayadura mayor (hasta el metal) o daño menor, siga estas instrucciones:

NOTA: Manitowoc Crane Care recomienda que un carrocería calificado prepare, imprima y pinte cualquier rayadura mayor o daño menor.

PRECAUCIÓN
Si el daño es estructural, se debe contactar y consultar a Manitowoc Crane Care con respecto a qué reparaciones son necesarias.

Para rayaduras y marcas en zonas altamente visibles:
- Lije para eliminar la raya, de la marca hacia afuera, para mezclar la reparación con la superficie original. Se puede aplicar masilla según sea necesario para ocultar el defecto, luego lije para alisar.
- Cubra todo el metal sin pintar con un imprimator compatible con el acabado de la pintura original y deje secar completamente.
- Prepare la superficie antes de aplicar la capa de acabado.
- Aplique una capa de acabado de pintura utilizando técnicas de mezclado aceptables. Se recomienda el uso de los colores de la pintura original para asegurar la mejor igualación de color posible.

Para rayaduras y marcas en zonas de baja visibilidad:
- Considere retocar los puntos con una brocha para cubrir el metal. Esto retardará los efectos de la corrosión y permitirá hacer la reparación más adelante durante un intervalo de mantenimiento normal.

Las manchas se deben retocar con pintura de buena calidad. Los imprimitores tienden a ser porosos; usar únicamente una sola capa de imprimitor permitirá que el aire y el agua penetren la reparación con el tiempo.

Aplicación

Dependiendo del ambiente en que se usa y/o almacena la grúa, la aplicación inicial de fábrica de Carwell® T32-CP-90 debe ayudar a inhibir la corrosión durante unos 12 meses aproximadamente.

Se recomienda al propietario de la grúa que aplique el tratamiento de forma periódica después de ese tiempo para continuar la protección contra la corrosión de la grúa y sus componentes.

Sin embargo, si se usa y/o almacena una grúa bajo condiciones ambientales severas (tales como islas, regiones costeras, zonas industriales, zonas donde en invierno se aplica sal a las carreteras, etc.), se recomienda aplicar el tratamiento antes de los 12 meses, por ejemplo, repetir el tratamiento cada 6-9 meses.
• No aplique en zonas recientemente imprimadas o pinta-
das por lo menos hasta 48 horas después que la pintura
se haya secado y curado completamente. Para zonas
de retoques menores se necesita un período de
24 horas de secado antes de aplicar el tratamiento.

NOTA: La unidad debe estar completamente seca antes
de aplicar el tratamiento.

• No deje que el producto se apose o acumule en los bur-
letes, en las empaquetaduras de caucho, etc. La unidad
no debe tener charcos o escurrimientos evidentes en
ninguna parte.

• Para asegurar una cobertura adecuada de tratamiento,
el producto necesita ser pulverizado sobre la unidad.

• Se recomienda el uso de recipientes a presión para apli-
car el tratamiento a la unidad que se está procesando.

• El tratamiento Carwell® está disponible en envase de
aerosol de 16 onzas a través de Manitowoc Crane Care
(número de pieza 8898904099).

• Después que se completa la aplicación del tratamiento,
lave y limpie los residuos de las luces, el parabrisas, las
agarraderas, las escaleras/peldaños y todas las zonas
de acceso a la grúa, según sea necesario.

Comuníquese con Manitowoc Crane Care en caso de tener
preguntas.

Áreas de aplicación

Vea la Figura 8-8 para la información siguiente.

• La parte de abajo de la unidad tendrá una cobertura
completa de inhibidor de oxidación. Estas con las únicas
zonas donde una capa completa de inhibidor de oxida-
ción es aceptable en las superficies pintadas. Las áreas
incluyen: válvulas, extremo y adaptadores de mangu-
eras, adaptador giratorio, bombas, ejes, líneas impulsor-
as, transmisión, sujetadores de anillos de giro y todas
las superficies interiores del chasis.

• Las áreas de aplicación del chasis son: extremos y
adaptadores de mangueras, todos los sujetadores y la
tornillería sin pintar, todas las superficies de metal
expuesto, bases de estabilizador y tornillería de la
alarma de retroceso.

• Las aplicaciones en la superestructura son: extremo de
manguera y adaptadores, cable del malacate, resortes
tensores de rodillos en malacates, todos los sujetadores
y la tornillería sin pintar, válvulas, sujetadores de anillo
de giro, todas las superficies metálicas sin pintar.

• Las zonas de aplicación en la pluma son: pasadores de
pivote, extremo de manguera y adaptadores, pasadores
de plumín y ejes, todas las superficies metálicas sin pin-
tar, pasadores y sujetadores de bola/aparejo de gancho.

• Toda la tornillería, pinzas, pasadores, conexiones de
manguera que no están pintados tendrán una aplicación
del tratamiento.
FIGURA 8-8
<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conexiones de tubería del malacate</td>
</tr>
<tr>
<td>2</td>
<td>Resorte tensor</td>
</tr>
<tr>
<td>3</td>
<td>Pasadores de contrapeso</td>
</tr>
<tr>
<td>4</td>
<td>Apoyo de la pluma</td>
</tr>
<tr>
<td>5</td>
<td>Banco de válvulas, conexiones de manguera dentro de la plataforma de giro</td>
</tr>
<tr>
<td>6</td>
<td>Tornillería de extensión de la pluma (opcional)</td>
</tr>
<tr>
<td>7</td>
<td>Eje de pivote</td>
</tr>
<tr>
<td>8</td>
<td>Pasadores de punta de la pluma, pinzas</td>
</tr>
<tr>
<td>9</td>
<td>Aparejo de bola/gancho</td>
</tr>
<tr>
<td>10</td>
<td>Tornillería de montaje de espejo</td>
</tr>
<tr>
<td>11</td>
<td>Tornillería de tren de fuerza</td>
</tr>
<tr>
<td>12</td>
<td>Conexiones de manguera de estabilizadores</td>
</tr>
<tr>
<td>13</td>
<td>Pasadores, pinzas de estabilizadores</td>
</tr>
<tr>
<td>14</td>
<td>Parte de abajo completa de la unidad</td>
</tr>
<tr>
<td>15</td>
<td>Sujetadores del cojinete de plataforma de giro</td>
</tr>
<tr>
<td>16</td>
<td>Cable</td>
</tr>
<tr>
<td>17</td>
<td>Tornillería de viga de estabilizador</td>
</tr>
</tbody>
</table>
SECCIÓN 9
INSTALACIÓN DE LA GRÚA

CONTENIDO DE LA SECCIÓN

Generalidades .. 9-1
Requisitos mínimos del camión 9-2
Configuraciones de montaje 9-4
Requisitos de TDF 9-14
Potencia .. 9-14
Montaje directo a la TDF 9-14
Relación de TDF 9-14
Rotación de la bomba 9-14
Resistencia de chasis del camión 9-15
Tablas de módulo de sección 9-16
Preparación del camión 9-21
Precauciones para la soldadura 9-21
Colocación de la grúa en el camión 9-21
TDF, Bomba y Depósito 9-21
Refuerzo de la extensión del chasis posterior .. 9-22
Montaje de la grúa 9-26
Conexión eléctrica con el camión .. 9-30
Conexión de bomba hidráulica 9-32
Calibración del RCL 9-34
Procedimiento de rodaje inicial de la grúa .. 9-34
Prueba de estabilidad 9-34
Contrapeso 9-37
Retiro del contrapeso 9-38
Instalación del contrapeso 9-38
Especificaciones 9-40
TDF ... 9-40
Sistema hidráulico 9-40
Depósito hidráulico 9-40
Válvula multiplicadora hidráulica - opcional 9-40
Acondicionador de aire 9-40
Sistema de malacate 9-41
Velocidades de funcionamiento de equipos .. 9-41
Contrapeso 9-42
Generalidades 9-42
Peso de la pluma - incluye malacate/cable .. 9-42
Diagrama de dimensiones 9-43
Caja de torsión extendida de la NBT40-1 y NBT45-1 9-43
Caja de torsión estándar de la NBT40-1 y NBT45-1 9-44
Caja de torsión extendida de la NBT36-1 9-45

GENERALIDADES

Esta sección proporciona la información de montaje correcto y revisión inicial de la grúa. El montaje incorrecto puede causar daños al chasis del camión, tren de mando y a la bomba hidráulica y causar la inestabilidad de la grúa. Es necesario satisfacer las leyes del Departamento Federal de Transporte relacionadas con la fabricación y modificación de vehículos tales como luces, frenos y cargas en el eje, al igual que las leyes estatales relacionadas con restricciones de peso y de dimensiones tales como largo total y proyección horizontal.

El fabricante final del vehículo debe certificar que las capacidades de los ejes no se han excedido con todos los equipos permanentemente fijados, incluyendo el tanque de combustible lleno y el personal (calculado a razón de 90 kg [200 lb] c/u).

Las grúas National deberán satisfacer la norma ASME/ANSI B30.5 (más reciente) al ser instaladas como grúas y la norma ASME/ANSI B30.23 (más reciente) al ser instaladas como equipo de levante de personal. Cuando está equipado con la opción de capacidad doble desde la fábrica, el equipo cumple con la norma ASME B30.5 (más reciente) y ANSI/SAIA A92.2 (más reciente). Estas normas exigen que las soldaduras satisfagan la norma AWS D14.3 o AWS D1.1, respectivamente. Todos los trabajos de montaje deberán llevarse a cabo cumpliendo estos códigos.
REQUISITOS MÍNIMOS DEL CAMIÓN

Se deben considerar muchos factores para la selección de un camión adecuado para una grúa de la serie NBT40-1. Se deben considerar los puntos siguientes.

- **Capacidades de ejes**: las capacidades de los ejes son determinadas por los ejes, neumáticos, aros, ballestas, frenos, la dirección y la resistencia del chasis del camión. Si alguno de estos componentes está por debajo de la capacidad requerida, la capacidad bruta del eje debe reducirse al valor del componente más débil.

- **Distancia entre ejes (WB), cabina a muñón (CT) y peso del chasis solo**
 - Configuración de montaje
 - Largo de pluma
 - Largo de plataforma

Las distancias entre ejes (WB), cabina a muñón (CT) y pesos del chasis que se muestran satisfacen los requerimientos de estabilidad y capacidades técnicas de los ejes. Las dimensiones dadas suponen que la base inferior ha sido instalada correctamente detrás de la cabina del camión. Si los tubos de escape, protuberancias de la transmisión, etc., no permiten instalarla cerca de la cabina, será necesario aumentar las distancias WB y CT. Consulte las páginas de configuración de montaje para información adicional.

- **Límites de peso de ejes**: los estados individuales varían en cuanto a las cargas admisibles que un camión de tres o cuatro ejes puede transportar en las carreteras estatales. Algunos estados permiten 11 340 kg (25 000 lb) en el eje de la dirección y 20 412 kg (45 000 lb) en el eje en tándem si la unidad ha sido definida como una grúa para montaje sobre un camión. Todos los estados deben adherirse a los requisitos de la Ley Federal de Puentes para los camiones que se conducen en el sistema de carreteras interestatales. Se debe usar la fórmula de la Ley Federal de Puentes para determinar los pesos por eje permitidos para cada eje individual y grupo de ejes.

- **Chasis del camión**: seleccione un camión con un chasis tal que se minimice o elimine la necesidad de reforzar o extender el chasis posterior (AF). Se ofrecen muchos chasis que tienen el módulo de sección (SM) y la resistencia al momento flector (RBM) necesarios en su chasis posterior (AF) de manera que no requieren refuerzo. El estabilizador delantero sencillo (SFO) se usa para obtener una zona de trabajo de 360 grados alrededor del camión. El chasis debajo de la cabina hasta la suspensión delantera deberá tener los valores mínimos de SM y RBM porque frecuentemente es difícil reforzar el chasis hasta la suspensión delantera debido al motor, los montajes del radiador y el mecanismo de la dirección. Consulte las páginas de Requisitos mínimos del camión y Resistencia de chasis del camión para ver los valores del SM y de resistencia al momento flector (RBM) necesarios.

- **Equipos adicionales**: además de las capacidades nominales de los ejes, requisitos de distancia entre ejes y entre cabina y eje y del chasis, se recomienda que el camión disponga de control electrónico del motor, capacidad adicional de enfriamiento y una transmisión con una abertura disponible para una toma de fuerza (TDF) de servicio severo adicional. Vea las páginas de Requisitos de TDF para más información. Se debe usar un camión con cabina convencional para los montajes de grúa estándar.

- **Interruptor de arranque en punto muerto**: el chasis deberá estar provisto de un interruptor que impida el giro del arrancador del motor cuando la transmisión está engranada en una marcha.

- **Identificación del número de serie**: la Figura 9-1 muestra las ubicaciones típicas del número de serie de los componentes principales de la grúa. Verifique que los números de serie de los componentes principales correspondan con el número de serie ubicado en la base inferior. Si cualquiera de los números de serie no corresponde, comuníquese con la fábrica antes de continuar. La correspondencia entre los números de serie sirve para asegurar que se registre información precisa.
Ubicación típica del número de serie

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Base inferior</td>
<td>5</td>
<td>Torreta</td>
</tr>
<tr>
<td>2</td>
<td>Sección de base de la pluma</td>
<td>6</td>
<td>Sección telescópica 3 de la pluma</td>
</tr>
<tr>
<td>3</td>
<td>Sección telescópica 1 de la pluma</td>
<td>7</td>
<td>Sección telescópica 4 de la pluma</td>
</tr>
<tr>
<td>4</td>
<td>Sección telescópica 2 de la pluma</td>
<td>8</td>
<td>Cilindro de elevación</td>
</tr>
</tbody>
</table>
CONFIGURACIONES DE MONTAJE

Configuración de la NBT36-1 — Caja de torsión estándar y pluma de 103 pies

La configuración de montaje para la grúa con una pluma de 103 pies y caja de torsión estándar que se ilustra en la Figura 9-2 se basa en un factor de estabilidad del 85 %.

La unidad completa se debe instalar en el camión de conformidad con los requerimientos de la fábrica. La instalación se debe probar para determinar los requerimientos reales de estabilidad y contrapeso puesto que el chasis de los camiones individuales varía. Comuníquese con National Crane para más detalles.

NOTA: Si el camión solo no satisface los requisitos de peso, será necesario usar contrapesos.

Requerimientos de montaje del camión y la grúa:

- Zona de trabajo - 360°
- Capacidad bruta de peso del eje (GAWR), delantero: 9072 kg (20 000 lb)
- Capacidad bruta de peso del eje (GAWR), trasero: 20 865 kg (46 000 lb)
- Capacidad bruta de peso del vehículo (GVWR): 29 937 kg (66 000 lb)
- Distancia entre ejes (WB): 655 cm (258 pulg)
- Cabina a muñón (CT): 459 cm (181 pulg)
- Chasis posterior (AF): 459 cm (181 pulg)
- Módulo de sección del chasis (SM), eje delantero a extremo de chasis posterior (AF): 426 cm³ (30.0 pulg³)
- Peso de camión solo, delantero: 4853 kg (10 700 lb)
- Peso de camión solo, trasero: 3864 kg (8520 lb)
- Peso promedio final estimado: 24 460 kg (53 924 lb)
- Bloque de poleas 2/3
- Plataforma de aluminio y escalerillas
- 100 gal de combustible y dos personas en la cabina
- Agregue 858 kg (1891 lb) por el plumín de 31/55 pies, 637 kg (1405 lb) por el malacate auxiliar con polea de puntal superior y peso de línea de tensión.

NOTA: Las especificaciones se basan en los pesos del camión solo antes de la instalación del conjunto de grúa para un factor de estabilidad del 85 %.
Configuración de la NBT36-1 — Caja de torsión estándar y pluma de 127 pies

La configuración de montaje para la grúa con una pluma de 127 pies y caja de torsión estándar que se ilustra en la Figura 9-3 se basa en un factor de estabilidad del 85%.

La unidad completa se debe instalar en el camión de conformidad con los requerimientos de la fábrica. La instalación se debe probar para determinar los requerimientos reales de estabilidad y contrapeso puesto que el chasis de los camiones individuales varía. Comuníquese con National Crane para más detalles.

NOTA: Si el camión solo no satisface los requisitos de peso, será necesario usar contrapesos.

Requerimientos de montaje del camión y la grúa:
- Zona de trabajo - 360°
- Capacidad bruta de peso del eje (GAWR), delantero: 9072 kg (20 000 lb)
- Capacidad bruta de peso del eje (GAWR), trasero: 20 865 kg (46 000 lb)
- Capacidad bruta de peso del vehículo: 66 000 lb
- Distancia entre ejes (WB) 655 cm (258 pulg)
- Cabina a muñón (CT): 459 cm (181 pulg)
- Chasis posterior (AF): 305 cm (120 pulg) (mín)
- Resistencia del chasis: 785 MPa (110 000 psi)
- Módulo de sección del chasis (SM), eje delantero a extremo de chasis posterior (AF): 426 cm³ (30.0 pulg³)
- Peso de camión solo, delantero: 4853 kg (10 700 lb)
- Peso de camión solo, trasero: 3864 kg (8520 lb)
- Peso promedio final estimado:
 - 24 691 kg (54 434 lb)

- Bloque de poleas 2/3
- Plataforma de aluminio y escaleras
- 100 gal de combustible y dos personas en la cabina
- Agregue 858 kg (1891 lb) por el plumín de 31/55 pies, 637 kg (1405 lb) por el malacate auxiliar con polea de puntal superior y peso de línea de tensión.

La Figura 9-3 muestra la zona de trabajo de 360 grados que se logra con el estabilizador delantero (estándar en la NBT36-1). Se requieren rieles delanteros extendidos para la instalación del SFO, a menos que la aplicación sin rieles extendidos haya sido aprobada por National Crane. Vea la sección "Resistencia del chasis del camión" para la resistencia requerida del chasis del camión para montar la grúa y el estabilizador delantero.

La capacidad bruta de peso del vehículo (GVWR) depende de que todos los componentes del vehículo (ejes, neumáticos, ballestas, chasis, etc.) satisigan las recomendaciones del fabricante. Siempre especifique el GVWR cuando compre camiones.

Se requiere que los motores diésel tengan un gobernador de velocidad variable y un solenoide de combustible de activación para funcionamiento para que la grúa funcione de modo uniforme. Se requiere de inyección electrónica de combustible y un interruptor de interbloqueo de transmisión en punto muerto.

NOTA: Las especificaciones se basan en los pesos del camión solo antes de la instalación del conjunto de grúa para un factor de estabilidad del 85%.
La configuración de montaje para la grúa con una pluma de 103 pies, caja de torsión estándar y eje empujador, que se ilustra en la Figura 9-4, se basa en un factor de estabilidad del 85%.

La unidad completa se debe instalar en el camión de conformidad con los requerimientos de la fábrica. La instalación se debe probar para determinar los requerimientos reales de estabilidad y contrapeso puesto que el chasis de los camiones individuales varía. Comuníquese con National Crane para más detalles.

NOTA: Si el camión solo no satisface los requisitos de peso, será necesario usar un contrapeso.

Requerimientos de montaje del camión y la grúa:

- Zona de trabajo: 360°
- Capacidad bruta de peso del eje (GAWR), delantero: 9072 kg (20 000 lb)
- Capacidad bruta de peso del eje (GAWR), trasero: 20 865 kg (46 000 lb)
- Capacidad bruta de peso del vehículo (GVWR): 29 937 kg (66 000 lb)
- Capacidad bruta de peso de eje empujador: 5987 kg (13 200 lb) (mín.)
- Distancia entre ejes (WB) 701 cm (276 pulg)
- Cabina a muñón (CT): 505 cm (199 pulg)
- Ubicación de eje empujador con respecto al eje delantero: 495 cm (195 pulg)
- Módulo de sección del chasis (SM), eje delantero a extremo de chasis posterior (AF): 426 cm³ (30 pulg³)
- Chasis posterior (AF): 241 cm (95 pulg) (mín)
- Resistencia del chasis: 785 MPa (110 000 psi)

- Peso de camión solo, delantero: 4780 kg (10 540 lb)
- Peso de camión solo, trasero: 4545 kg (10 020 lb)
- Peso final estimado con la configuración de máquina siguiente:
 - NBT40-1 (húmeda) - 25 670 kg (56 592 lb)
 - Bloque de poleas 2/3
 - Plataforma de aluminio y escaleras
 - 100 gal de combustible y dos personas en la cabina
 - Agregue 858 kg (1891 lb) por el plumín de 31/55 pies, 637 kg (1405 lb) por el malacate auxiliar con polea de puntal superior y peso de línea de tensión

La Figura 9-4 muestra la zona de trabajo de 360 grados que se puede lograr con el estabilizador delantero (estándar en la serie NBT40-1). El estabilizador delantero es esencial para extender la pluma y elevar cargas sobre la parte delantera del camión. Vea “Resistencia de chasis del camión” en la página 9-15 para la resistencia requerida del chasis del camión para montar la grúa y el estabilizador delantero. La capacidad bruta de peso del vehículo (GVWR) depende de que todos los componentes del vehículo (ejes, neumáticos, ballestas, chasis, etc.) satisfagan las recomendaciones del fabricante; siempre especifique la GVWR cuando compre un camión.

Se requiere que los motores diésel tengan un gobernador de velocidad variable y un solenoide de combustible de activación para funcionamiento para que la grúa funcione de modo uniforme. Se requiere de inyección electrónica de combustible y un interruptor de interbloqueo de transmisión en punto muerto.

NOTA: Las especificaciones se basan en los pesos del camión solo antes de la instalación del conjunto de grúa para un factor de estabilidad del 85%.
La configuración de montaje para la grúa con una pluma de 127 pies, caja de torsión estándar y eje empujador, que se ilustra en la Figura 9-5, se basa en un factor de estabilidad del 85 %.

La unidad completa se debe instalar en el camión de conformidad con los requerimientos de la fábrica. La instalación se debe probar para determinar los requerimientos reales de estabilidad y contrapeso puesto que el chasis de los camiones individuales varía. Comuníquese con National Crane para más detalles.

NOTA: Si el camión solo no satisface los requisitos de peso, será necesario usar contrapesos.

Requerimientos de montaje del camión y la grúa:
- Zona de trabajo - 360°
- Capacidad bruta de peso del eje (GAWR), delantero: 9072 kg (20 000 lb)
- Capacidad bruta de peso del eje (GAWR), trasero: 20 865 kg (46 000 lb)
- Capacidad bruta de peso del vehículo: 29 937 kg (66 000 lb)
- Capacidad bruta de peso del eje empujador: 5987 kg (13 200 lb)
- Distancia entre ejes: 701 cm (276 pulg)
- Cabina a muñón (CT): 505 cm (199 pulg)
- Ubicación de eje empujador con respecto al eje delantero: 495 cm (195 pulg)
- Módulo de sección del chasis (SM), eje delantero a extremo de chasis posterior (AF): 426 cm³ (30 pulg³)
- Chasis posterior (AF): 241 cm (95 pulg) (min)
- Resistencia del chasis: 785 MPa (110 000 psi)

NOTA: Las especificaciones se basan en los pesos del camión solo antes de la instalación del conjunto de grúa para un factor de estabilidad del 85 %.

La Figura 9-5 muestra la zona de trabajo de 360 grados que se puede lograr con el estabilizador delantero (estándar en la serie NBT40-1). El estabilizador delantero es esencial para extender la pluma y elevar cargas sobre la parte delantera del camión. Vea "Resistencia de chasis del camión" en la página 9-15 para la resistencia requerida del chasis del camión para montar la grúa y el estabilizador delantero.

La capacidad bruta de peso del vehículo (GVWR) depende de que todos los componentes del vehículo (ejes, neumáticos, ballestas, chasis, etc.) satisfagan las recomendaciones del fabricante. Siempre especifique el GVWR cuando compruebe camiones.

Se requiere que los motores diésel tengan un gobernador de velocidad variable y un solenoide de combustible de activación para funcionamiento para que la grúa funcione de modo uniforme. Se requiere de inyección electrónica de combustible y un interruptor de interbloqueo de transmisión en punto muerto.

NOTA: Las especificaciones se basan en los pesos del camión solo antes de la instalación del conjunto de grúa para un factor de estabilidad del 85 %.
La configuración de montaje para la grúa con una pluma de 142 pies, caja de torsión estándar y eje empujador, que se ilustra en la Figura 9-5, se basa en un factor de estabilidad del 85 %.

La unidad completa se debe instalar en el camión de conformidad con los requerimientos de la fábrica. La instalación se debe probar para determinar los requerimientos reales de estabilidad y contrapeso puesto que el chasis de los camiones individuales varía. Comuníquese con National Crane para más detalles.

NOTA: Si el camión solo no satisface los requisitos de peso, será necesario usar contrapesos.

Requerimientos de montaje del camión y la grúa:

- **Zona de trabajo - 360°
- Capacidad bruta de peso del eje (GAWR), delantero: 9072 kg (20 000 lb)
- Capacidad bruta de peso del eje (GAWR), trasero: 20 865 kg (46 000 lb)
- Capacidad bruta de peso del vehículo: 29 937 kg (66 000 lb)
- Capacidad bruta de peso del eje empujador: 5987 kg (13 200 lb)
- Distancia entre ejes: 701 cm (276 pulg)
- Cabina a muñón (CT): 505 cm (199 pulg)
- Ubicación de eje empujador con respecto al eje delantero: 495 cm (195 pulg)
- Módulo de sección del chasis (SM), eje delantero a extremo de chasis posterior (AF): 426 cm³ (30 pulg³)
- Chasis posterior (AF): 241 cm (95 pulg) (min)
- Resistencia del chasis: 785 MPa (110 000 psi)

- Peso de camión solo, delantero: 4780 kg (10 540 lb)
- Peso de camión solo, trasero: 4545 kg (10 020 lb)
- Peso final estimado con la configuración de máquina siguiente.
 NBT40-1 (húmeda): 26 851 kg (59 197 lb)
 - Bloque de poleas 2/3
 - Plataforma de aluminio y escaleras
 - 100 gal de combustible y dos personas en la cabina
 - Agregue 858 kg (1891 lb) por el plumín de 31/55 pies, 637 kg (1405 lb) por el malacate auxiliar con polea de puntal superior y peso de línea de tensión.

La Figura 9-5 muestra la zona de trabajo de 360 grados que se puede lograr con el estabilizador delantero (estándar en la serie NBT40-1). El estabilizador delantero es esencial para extender la pluma y elevar cargas sobre la parte delantera del camión. Vea “Resistencia de chasis del camión” en la página 9-15 para la resistencia requerida del chasis del camión para montar la grúa y el estabilizador delantero.

La capacidad bruta de peso del vehículo (GVWR) depende de que todos los componentes del vehículo (ejes, neumáticos, ballestas, chasis, etc.) satisfagan las recomendaciones del fabricante. Siempre especifique el GVWR cuando compre camiones.

Se requiere que los motores diésel tengan un gobernador de velocidad variable y un solenoide de combustible de activación para funcionamiento para que la grúa funcione de modo uniforme. Se requiere de inyección electrónica de combustible y un interruptor de interbloqueo de transmisión en punto muerto.

NOTA: Las especificaciones se basan en los pesos del camión solo antes de la instalación del conjunto de grúa para un factor de estabilidad del 85 %.
La configuración de montaje para la grúa con una pluma de 127 pies, caja de torsión extendida y eje empujador, que se ilustra en la Figura 9-7, se basa en un factor de estabilidad del 85%.

La unidad completa se debe instalar en el camión de conformidad con los requerimientos de la fábrica. La instalación se debe probar para determinar los requerimientos reales de estabilidad y contrapeso puesto que el chasis de los camiones individuales varía. Comuníquese con National Crane para más detalles.

NOTA: Si el camión solo no satisface los requisitos de peso, será necesario usar contrapesos.

Requerimientos de montaje del camión y la grúa:
- **Zona de trabajo - 360°**
- **Capacidad bruta de peso del eje (GAWR), delantero:** 9072 kg (20 000 lb)
- **Capacidad bruta de peso del eje (GAWR), trasero:** 20 865 kg (46 000 lb)
- **Capacidad bruta de peso del vehículo:** 29 937 kg (66 000 lb)
- **Capacidad de peso de eje empujador:** 5987 kg (13 200 lb)
- **Distancia entre ejes (WB) 762 cm (300 pulg)**
- **Cabina a muñón (CT):** 505 cm (199 pulg)
- **Ubicación de eje empujador con respecto al eje delantero:** 556.2 cm (219 pulg)
- **Módulo de sección del chasis (SM), eje delantero a extremo de chasis posterior (AF):** 426 cm³ (27.5 pulg³)
- **Chasis posterior (AF):** 241 cm (95 pulg) (min)
- **Resistencia del chasis:** 785 MPa (110 000 psi)

- **Peso de camión solo, delantero:** 4762 kg (10 500 lb)
- **Peso de camión solo, trasero:** 5685 kg (10 330 lb)

NOTA: Se puede requerir el contrapeso de giro adicional RC1000 para la estabilidad de la NBT40-1, dependiendo de la configuración.

- **Peso final estimado con la configuración de máquina siguiente.**
 - NBT40-1 (húmeda): 27 256 kg (60 088 lb)
 - Bloque de poleas 2/3
 - Plataformas de aluminio y escalerillas
 - 100 gal de combustible y dos personas en la cabina
 - Agregue 858 kg (1891 lb) por el plumín de 31/55 pies, 637 kg (1405 lb) por el malacate auxiliar con polea de puntal superior y peso de línea de tensión.

NOTA: Esta configuración muestra la zona de trabajo de 360 grados que se logra con las opciones de contrapeso de giro RC1000 y caja de torsión EXTB.

La Figura 9-7 muestra la zona de trabajo de 360 grados. Vea “Resistencia de chasis del camión” en la página 9-15 para la resistencia requerida del chasis del camión para instalar la grúa.

La capacidad bruta de peso del vehículo (GVWR) depende de que todos los componentes del vehículo (ejes, neumáticos, ballestas, chasis, etc.) satisfagan las recomendaciones del fabricante. Siempre especifique el GVWR cuando compre camiones.

Se requiere que los motores diésel tengan un gobernador de velocidad variable y un solenoide de combustible de activación para funcionamiento para que la grúa funcione de modo uniforme. Se requiere de inyección electrónica de combustible y un interruptor de interbloqueo de transmisión en punto muerto.
Configuración de la NBT40-1 — Caja de torsión extendida y pluma de 142 pies

La configuración de montaje para la grúa con una pluma de 142 pies, caja de torsión extendida y eje empujador, que se ilustra en la Figura 9-8, se basa en un factor de estabilidad del 85 %.

La unidad completa se debe instalar en el camión de conformidad con los requerimientos de la fábrica. La instalación se debe probar para determinar los requerimientos reales de estabilidad y contrapeso puesto que el chasis de los camiones individuales varía. Comuníquese con National Crane para más detalles.

NOTA: Si el camión solo no satisface los requisitos de peso, será necesario usar contrapesos.

Requerimientos de montaje del camión y la grúa:
- Zona de trabajo - 360°
- Capacidad bruta de peso del eje (GAWR), delantero: 9072 kg (20 000 lb)
- Capacidad bruta de peso del eje (GAWR), trasero: 20 865 kg (46 000 lb)
- Capacidad bruta de peso del vehículo: 29 937 kg (66 000 lb)
- Capacidad de peso de eje empujador: 5987 kg (13 200 lb)
- Distancia entre ejes (WB) 762 cm (300 pulg)
- Cabina a muñón (CT): 566 cm (223 pulg)
- Ubicación de eje empujador con respecto al eje delantero: 556.2 cm (219 pulg)
- Módulo de sección del chasis (SM), eje delantero a extremo de chasis posterior (AF): 426 cm³ (30 pulg³)
- Chasis posterior (AF): 241 cm (95 pulg) (mín)
- Resistencia del chasis: 785 MPa (110 000 psi)
- Peso de camión solo, delantero: 4762 kg (10 500 lb)
- Peso de camión solo, trasero: 5685 kg (10 330 lb)
- Peso final estimado con la configuración de máquina siguiente:
 NBT40-1 - 27 351 kg (60 298 lb)
 - Bloque de poleas 2/3
 - Plataformas de aluminio y escaleras
 - 100 gal de combustible y dos personas en la cabina
 - Agregue 858 kg (1891 lb) por el plumín de 31/55 pies, 637 kg (1405 lb) por el malacate auxiliar con polea de puntal superior y peso de línea de tensión.

La Figura 9-8 muestra la zona de trabajo de 360 grados. Vea “Resistencia de chasis del camión” en la página 9-15 para la resistencia requerida del chasis del camión para instalar la grúa.

La capacidad bruta de peso del vehículo (GVWR) depende de que todos los componentes del vehículo (ejes, neumáticos, ballestas, chasis, etc.) satisfagan las recomendaciones del fabricante. Siempre especifique el GVWR cuando compruebe camiones.

Se requiere que los motores diésel tengan un gobernador de velocidad variable y un solenoide de combustible de activación para funcionamiento para que la grúa funcione de modo uniforme. Se requiere de inyección electrónica de combustible y un interruptor de interbloqueo de transmisión en punto muerto.

NOTA: Las especificaciones se basan en los pesos del camión solo antes de la instalación del conjunto de grúa para un factor de estabilidad del 85 %.
La configuración de montaje para la grúa con una pluma de 127 pies, caja de torsión extendida y eje de cola, que se ilustra en la Figura 9-9, se basa en un factor de estabilidad del 85 %.

La unidad completa se debe instalar en el camión de conformidad con los requerimientos de la fábrica. La instalación se debe probar para determinar los requerimientos reales de estabilidad y contrapeso puesto que el chasis de los camiones individuales varía. Comuníquese con National Crane para más detalles.

NOTA: Si el camión solo no satisface los requisitos de peso, será necesario usar contrapesos.

Requerimientos de montaje del camión y la grúa:

- Zona de trabajo - 360°
- Capacidad bruta de peso del eje (GAWR), delantero: 9072 kg (20 000 lb)
- Capacidad bruta de peso del eje (GAWR), trasero: 20 865 kg (46 000 lb)
- Capacidad bruta de peso del vehículo: 29 937 kg (66 000 lb)
- Capacidad de peso de eje cola: 5987 kg (13 200 lb)
- Cabina a muñón (CT): 490 cm (193 pulg)
- Distancia entre ejes (WB) 685 cm (270 pulg)
- Ubicación de eje de cola con respecto al eje delantero: 891.5 cm (351 pulg)
- Módulo de sección del chasis (SM), eje delantero a extremo de chasis posterior (AF): 426 cm³ (30 pulg³)
- Resistencia del chasis: 785 MPa (110 000 psi)
- Bastidor posterior (AF): 343 cm (135 pulg)
- Peso de camión solo, delantero: 4436 kg (9780 lb)
- Peso de camión solo, trasero: 5012 kg (11 050 lb)
- Peso final estimado con la configuración de máquina siguiente:
 NBT45-1: 28 265 kg (62 313 lb)
 - Bloque de poleas 2/3
 - Plataformas de aluminio y escalerillas
 - 100 gal de combustible y dos personas en la cabina
 - Agregue 858 kg (1891 lb) por el plumín de 31/55 pies, 637 kg (1405 lb) por el malacate auxiliar con polea de puntal superior y peso de línea de tensión.

La Figura 9-9 muestra la zona de trabajo de 360 grados. Vea “Resistencia de chasis del camión” en la página 9-15 para la resistencia requerida del chasis del camión para instalar la grúa.

La capacidad bruta de peso del vehículo (GVWR) depende de que todos los componentes del vehículo (ejes, neumáticos, ballestas, chasis, etc.) satisfagan las recomendaciones del fabricante. Siempre especifíque el GVWR cuando compre camiones.

Se requiere que los motores diésel tengan un gobernador de velocidad variable y un solenoide de combustible de activación para funcionamiento para que la grúa funcione de modo uniforme. Se requiere de inyección electrónica de combustible y un interruptor de interbloqueo de transmisión en punto muerto.

NOTA: Esta configuración muestra la zona de trabajo de 360 grados que se logra con la caja de torsión EXTB.
La configuración de montaje para la grúa con una pluma de 142 pies, caja de torsión extendida y eje de cola, que se ilustra en la Figura 9-10, se basa en un factor de estabilidad del 85 %.

La máquina completa deberá instalarse en el camión según los requisitos de la fábrica y se debe llevar a cabo una prueba para determinar los requisitos reales de estabilidad y contrapeso, puesto que los chasis de los camiones individuales varían.

NOTA: Si el camión solo no satisface los requisitos de peso, será necesario usar contrapesos.

Requerimientos de montaje del camión y la grúa:
- Zona de trabajo - 360°
- Capacidad bruta de peso del eje (GAWR), delantero: 9072 kg (20 000 lb)
- Capacidad bruta de peso del eje (GAWR), trasero: 20 865 kg (46 000 lb)
- Capacidad bruta de peso del vehículo: 29 937 kg (66 000 lb)
- Capacidad de peso de eje cola: 5987 kg (13 200 lb)
- Distancia entre ejes (WB) 685 cm (270 pulg)
- Cabina a muñón (CT): 490 cm (193 pulg)
- Ubicación de eje de cola con respecto al eje delantero: 205.7 cm (81 pulg)
- Resistencia del chasis: 785 MPa (110 000 psi)
- Módulo de sección del chasis (SM), eje delantero a extremo de chasis posterior (AF): 426 cm³ (30 pulg³)
- Chasis posterior (AF): 343 cm (135 pulg) (mín)
- Peso de camión solo, delantero: 4436 kg (9780 lb)
- Peso de camión solo, trasero: 5012 kg (11 050 lb)
- Peso final estimado con la configuración de máquina siguiente:
 - NBT45-1: 28 852 kg (63 608 lb)
 - Bloque de poleas 2/3
 - Plataformas de aluminio y escaleras
 - 100 gal de combustible y dos personas en la cabina
 - Agregue 858 kg (1891 lb) por el plumín de 31/55 pies, 637 kg (1405 lb) por el malacate auxiliar con polea de puntal superior y peso de línea de tensión.

La Figura 9-10 muestra la zona de trabajo de 360 grados. Vea “Resistencia de chasis del camión” en la página 9-15 para la resistencia requerida del chasis del camión para instalar la grúa.

La capacidad bruta de peso del vehículo (GVWR) depende de que todos los componentes del vehículo (ejes, neumáticos, ballestas, chasis, etc.) satisigan las recomendaciones del fabricante. Siempre especifique el GVWR cuando compre camiones.

Se requiere que los motores diésel tengan un gobernador de velocidad variable y un solenoide de combustible de activación para funcionamiento para que la grúa funcione de modo uniforme. Se requiere de inyección electrónica de combustible y un interruptor de interbloqueo de transmisión en punto muerto.

NOTA: Esta configuración muestra la zona de trabajo de 360 grados que se logra con la opción de caja de torsión EXTB.
Configuración de la NBT45-1 — Caja de torsión extendida y pluma de 161 pies

La configuración de montaje para la grúa con una pluma de 161 pies, caja de torsión extendida y eje de cola se ilustra en la Figura 9-11.

La unidad completa se debe instalar en el camión de conformidad con los requerimientos de la fábrica. La instalación se debe probar para determinar los requerimientos reales de estabilidad y contrapeso puesto que el chasis de los camiones individuales varía. Comuníquese con National Crane para más detalles.

NOTA: Si el camión solo no satisface los requisitos de peso, será necesario usar contrapesos.

Requerimientos de montaje del camión y la grúa:

- Zona de trabajo - 360°
- Capacidad bruta de peso del eje (GAWR), delantero: 9072 kg (20 000 lb)
- Capacidad bruta de peso del eje (GAWR), trasero: 20 865 kg (46 000 lb)
- Capacidad bruta de peso del vehículo: 29 937 kg (66 000 lb)
- Capacidad bruta de eje de cola: 5987 kg (13 200) lb
- Distancia entre ejes (WB) - 673 cm (265 pulg)
- Cabina a muñón (CT): 477 cm (188 pulg)
- Ubicación de eje de cola con respecto al eje delantero: 878.8 cm (346 pulg)
- Módulo de sección del chasis (SM), eje delantero a extremo de chasis posterior (AF): 426 cm³ (30 pulg³)
- Chasis posterior (AF): 343 cm (135 pulg) (mín)
- Peso de camión solo, delantero: 4336 kg (9560 lb)
- Peso final estimado con la configuración de máquina siguiente:
 - NBT45-1: 29 208 kg (64 392 lb)
 - Bloque de poleas 2/3
 - Plataformas de aluminio y escaleras
 - 100 gal de combustible y dos personas en la cabina
 - Agregue 858 kg (1891 lb) por el plumín de 31/55 pies, 637 kg (1405 lb) por el malacate auxiliar con polea de puntal superior y peso de línea de tensión.

La Figura 9-11 muestra la zona de trabajo de 360 grados. Vea “Resistencia de chasis del camión” en la página 9-15 para la resistencia requerida del chasis del camión para instalar la grúa.

La capacidad bruta de peso del vehículo (GVWR) depende de que todos los componentes del vehículo (ejes, neumáticos, ballestas, chasis, etc.) satisigan las recomendaciones del fabricante. Siempre especifique el GVWR cuando compre camiones.

Se requiere que los motores diésel tengan un gobernador de velocidad variable y un solenoide de combustible de activación para funcionamiento para que la grúa funcione de modo uniforme. Se requiere de inyección electrónica de combustible y un interruptor de interbloqueo de transmisión en punto muerto.

NOTA: Esta configuración muestra la zona de trabajo de 360 grados que se logra con la opción de caja de torsión EXTB.
REQUISITOS DE TDF

Potencia
La TDF debe satisfacer los requerimientos mínimos que se muestran en las especificaciones hidráulicas. Vea “Especificaciones” en la página 9-40.

Montaje directo a la TDF
La mayoría de las instalaciones de bomba se pueden montar directamente a la TDF usando conjuntos adaptadores ofrecidos por el proveedor de la TDF. Si la bomba se monta a la TDF, su peso deberá estar soportado por una tira colocado entre la bomba y la transmisión. El acoplamiento por eje estriado en una bomba de montaje directo requiere lubricación. Se aplica un multilubricante especial (#200S Silver Streak) al eje durante la instalación original, el cual debe volverse a aplicar al eje de la TDF semestralmente.

Relación de TDF
La velocidad del eje de la bomba hidráulica se determina multiplicando la velocidad del motor del camión por la relación de la TDF:
- Velocidad del eje de la bomba = Velocidad (rpm) de motor del camión x relación de la TDF
- Por ejemplo: 2000 x 1.10 = 2200

Las combinaciones siguientes de relación de TDF y velocidad del motor proporcionan la velocidad adecuada al eje de la bomba, la cual es la velocidad máxima recomendada para la bomba hidráulica de la NBT40-1.

El motor debe hacerse funcionar dentro de una gama específica de velocidades para asegurar que la potencia y el par motor que desarrolle sean adecuados para operar la bomba bajo presión y suministrar el caudal requerido.

Selezione la velocidad del motor más lenta posible para reducir el uso de combustible, y asegúrese que la relación de la TDF no exceda la capacidad de par motor del motor especialmente a velocidades bajas del motor.

Tabla 9-1

<table>
<thead>
<tr>
<th>Gama de velocidad óptima del motor (RPM)</th>
<th>Relación de TDF - Bomba de 2200 rpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>110 %</td>
</tr>
<tr>
<td>1800</td>
<td>122 %</td>
</tr>
<tr>
<td>1600</td>
<td>138 %</td>
</tr>
<tr>
<td>1500</td>
<td>147 %</td>
</tr>
</tbody>
</table>

Rotación de la bomba
La bomba hidráulica debe instalarse de modo que su rotación tenga el mismo sentido que indica la flecha en la caja de la bomba. Verifique el sentido de rotación del eje de salida de la TDF antes de seleccionar una bomba hidráulica de rotación en sentido horario (CW) o contrahorario (CCW). Se ofrecen bombas con rotación en sentido horario o contrahorario, las cuales están marcadas claramente en su caja con una flecha que indica el sentido.

PRECAUCIÓN
La bomba hidráulica se daña si se la hace girar en el sentido incorrecto.
No confunda el sentido de rotación del cigüeñal del motor con el sentido de rotación de la toma de fuerza. Si el eje de la toma de fuerza gira en sentido opuesto al cigüeñal del motor, gira en sentido horario (CW), visto desde la parte trasera del camión. Si el eje de la toma de fuerza gira en el mismo sentido que el cigüeñal del motor, gira en sentido contrahorario (CCW), visto desde la parte trasera del camión.
RESISTENCIA DE CHASIS DEL CAMIÓN

Para que el chasis del camión sea adecuado para soportar una grúa de la serie NBT40-1, deberá:

- Tener una rigidez suficiente para permitir el movimiento excesivo de la pluma debido a la deflexión del chasis del camión que se produce cuando se elevan cargas sobre la parte delantera de la máquina
- Tener resistencia suficiente para soportar las cargas inducidas por la grúa
- No doblarse ni deformarse permanentemente

El módulo de sección (SM) que determina la rigidez del chasis del camión es una medida de la superficie transversal de la sección del chasis. La resistencia al momento flector (RBM) es una medida de fuerza y se calcula multiplicando el módulo de sección (SM) de cada riel del chasis por el momento de flexión del material del riel.

Las grúas de la serie NBT40-1 requieren de una RBM mínima de 372 850 Nm (3 300 000 lb-pulg) y un SM de 426 cm³ (30 pulg³) desde la parte trasera del chasis del camión hasta la parte delantera de las cajas de los estabilizadores delanteros.

La resistencia que se requiere del chasis del camión desde la parte delantera de las cajas de estabilizadores hasta el punto de fijación del estabilizador delantero sencillo (SFO) varía y se indica en la tabla siguiente.

La mayoría de los chasis de camiones tienen propiedades de sección reducidas en la zona de la suspensión delantera debido a los recortes en el chasis o a que los refuerzos exteriores no llegan hasta la suspensión delantera. En estos casos es imperativo que se mida el chasis del camión y que se calcule el módulo de sección para compararlo con los valores dados en la tabla siguiente y asegurar que haya resistencia suficiente para las cargas del estabilizador delantero.

Las distancias que se indican en la Tabla 9-2 se muestran en la Figura 9-14.

<table>
<thead>
<tr>
<th>Distancia de punto de fijación del estabilizador delantero sencillo cm (pulg)</th>
<th>Módulo de sección (SM) por riel cm³ (pulg³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 30 (0 - 12)</td>
<td>44 (2.7)</td>
</tr>
<tr>
<td>30 - 61 (12 - 24)</td>
<td>90 (5.5)</td>
</tr>
<tr>
<td>61 - 91 (24 - 36)</td>
<td>134 (8.2)</td>
</tr>
<tr>
<td>91 - 121 (36 - 48)</td>
<td>180 (11.0)</td>
</tr>
<tr>
<td>121 - 152 (48 - 60)</td>
<td>224 (13.7)</td>
</tr>
<tr>
<td>152 - 182 (60 - 72)</td>
<td>270 (16.5)</td>
</tr>
<tr>
<td>182 - 213 (72 - 84)</td>
<td>315 (19.2)</td>
</tr>
<tr>
<td>213 - 243 (84 - 96)</td>
<td>359 (21.9)</td>
</tr>
<tr>
<td>243 - 274 (96 - 108)</td>
<td>405 (24.7)</td>
</tr>
<tr>
<td>274 - 304 (108 - 120)</td>
<td>449 (27.4)</td>
</tr>
<tr>
<td>304 + (120 +)</td>
<td>492 (30.0)</td>
</tr>
</tbody>
</table>
TABLAS DE MÓDULO DE SECCIÓN

Las tablas siguientes (A, B, C y D) determinan el módulo de sección (SM) del chasis del camión. Mida el chasis del camión y consulte las tablas para comprobar que el SM indicado por la fábrica sea correcto.

- **Canal (Tabla A en la página 9-17)** - La Tabla A proporciona el SM de canales de chasis con grosores de 3/16 pulg (4.76 mm), 1/4 pulg (6.35 mm), 5/16 pulg (7.94 mm) y 3/8 pulg (9.52 mm), agrupados en columnas de ancho de brida y profundidad de nervaduras. Cuando se conoce la profundidad del canal del chasis y el ancho de la brida, el punto en el cual las dos líneas se intersectan es el SM de ese canal en particular.

Si el SM del canal no satisface los requisitos, el canal deberá reforzarse utilizando el método más aplicable a continuación.

- **Canal de refuerzo (Tabla A en la página 9-17)** - Para proporcionar más resistencia, se puede añadir un canal de grosor adecuado al chasis existente.

La profundidad y ancho de brida de este canal deben escogerse de manera que quepa sobre el chasis existente.

El SM del canal necesario se obtiene de la Tabla A y se debe sumar al módulo de sección calculado para el chasis del camión. Sume este valor al módulo de sección del canal obtenido de la Tabla A.

- **Ángulo de refuerzo (Tabla B en la página 9-18)** - Si el camión se refuerza usando un ángulo, vea la Tabla B para los datos de resistencia adicional proporcionada por el ángulo. Sume este valor al módulo de sección del canal obtenido de la Tabla A.

- **Refuerzo de pletina (Tabla C en la página 9-19)** - El chasis puede reforzarse añadiendo una pletina de grosor adecuado y profundidad igual a la del chasis.

El módulo de sección de la pletina puede obtenerse de la Tabla C y este valor deberá sumarse al módulo de sección del chasis para calcular el módulo de sección total.

- **Refuerzo de ángulo inferior (Tabla D en la página 9-19)** - Esta tabla indica el módulo de sección de un ángulo con la brida bajo el chasis del camión que se añade a un chasis con un ángulo de refuerzo previamente añadido. Sume el módulo de sección de la Tabla D al módulo de sección obtenido de las Tablas A y B para determinar el módulo de sección total.

Los bordes de los ángulos o canales de refuerzo deben quedar a ras con los bordes del chasis.

Soldadura - Se deben colocar dos hileras de soldaduras de botón de 1 pulg (25.4 mm) de diámetro en un patrón escalonado de la nervadura. Las hileras deben estar separadas 5 pulg (127 mm) entre sí con las soldaduras a intervalos de 4 pulg (102 mm). No suelde sobre las bridas.
Si los valores de grosor, profundidad o brida varían, será necesario interpolar entre las tablas o variables dentro de una tabla para calcular la resistencia de la sección respectiva.

Si hay dudas en cuanto a la resistencia del chasis o refuerzos, comuníquese con National Crane antes de proceder.

TABLA A
Módulo de sección por cm³ (pulg³)

<table>
<thead>
<tr>
<th>Grosor de 4.76 mm (3/16 pulg)</th>
<th>W mm (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D mm (pulg)</td>
<td>64 (2.5)</td>
</tr>
<tr>
<td>203 (8)</td>
<td>87 (5.3)</td>
</tr>
<tr>
<td>229 (9)</td>
<td>103 (6.3)</td>
</tr>
<tr>
<td>254 (10)</td>
<td>120 (7.3)</td>
</tr>
<tr>
<td>279 (11)</td>
<td>138 (8.4)</td>
</tr>
<tr>
<td>305 (12)</td>
<td>156 (9.5)</td>
</tr>
<tr>
<td>330 (13)</td>
<td>177 (10.8)</td>
</tr>
<tr>
<td>356 (14)</td>
<td>197 (12.0)</td>
</tr>
<tr>
<td>381 (15)</td>
<td>220 (13.4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grosor de 6.35 mm (1/4 pulg)</th>
<th>W mm (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D mm (pulg)</td>
<td>64 (2.5)</td>
</tr>
<tr>
<td>203 (8)</td>
<td>113 (6.9)</td>
</tr>
<tr>
<td>229 (9)</td>
<td>134 (8.2)</td>
</tr>
<tr>
<td>254 (10)</td>
<td>156 (9.5)</td>
</tr>
<tr>
<td>279 (11)</td>
<td>180 (10.0)</td>
</tr>
<tr>
<td>305 (12)</td>
<td>205 (12.5)</td>
</tr>
<tr>
<td>330 (13)</td>
<td>231 (14.1)</td>
</tr>
<tr>
<td>356 (14)</td>
<td>259 (15.8)</td>
</tr>
<tr>
<td>381 (15)</td>
<td>287 (17.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grosor de 7.9 mm (5/16 pulg)</th>
<th>W mm (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D mm (pulg)</td>
<td>64 (2.5)</td>
</tr>
<tr>
<td>203 (8)</td>
<td>138 (8.4)</td>
</tr>
<tr>
<td>229 (9)</td>
<td>164 (10.0)</td>
</tr>
<tr>
<td>254 (10)</td>
<td>190 (11.6)</td>
</tr>
<tr>
<td>279 (11)</td>
<td>220 (13.4)</td>
</tr>
<tr>
<td>305 (12)</td>
<td>251 (15.3)</td>
</tr>
<tr>
<td>330 (13)</td>
<td>284 (17.3)</td>
</tr>
<tr>
<td>356 (14)</td>
<td>318 (19.4)</td>
</tr>
<tr>
<td>381 (15)</td>
<td>354 (21.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grosor de 9.5 mm (3/8 pulg)</th>
<th>W mm (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D mm (pulg)</td>
<td>64 (2.5)</td>
</tr>
<tr>
<td>203 (8)</td>
<td>161 (9.8)</td>
</tr>
<tr>
<td>229 (9)</td>
<td>192 (11.7)</td>
</tr>
<tr>
<td>254 (10)</td>
<td>223 (13.6)</td>
</tr>
<tr>
<td>279 (11)</td>
<td>257 (15.7)</td>
</tr>
<tr>
<td>305 (12)</td>
<td>295 (18.0)</td>
</tr>
<tr>
<td>330 (13)</td>
<td>333 (20.3)</td>
</tr>
<tr>
<td>356 (14)</td>
<td>374 (22.8)</td>
</tr>
<tr>
<td>381 (15)</td>
<td>416 (25.4)</td>
</tr>
</tbody>
</table>
TABLA B
Módulo de sección por cm³ (pulg³)

Grosor de 4.76 mm (3/16 pulg)

<table>
<thead>
<tr>
<th>D mm (pulg)</th>
<th>W mm (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 (2.75)</td>
<td>83 (3.25)</td>
</tr>
<tr>
<td>191 (7.5)</td>
<td>36 (2.2)</td>
</tr>
<tr>
<td>216 (8.5)</td>
<td>46 (2.8)</td>
</tr>
<tr>
<td>241 (9.5)</td>
<td>56 (3.4)</td>
</tr>
<tr>
<td>267 (10.5)</td>
<td>67 (4.1)</td>
</tr>
<tr>
<td>292 (11.5)</td>
<td>80 (4.9)</td>
</tr>
<tr>
<td>318 (12.5)</td>
<td>95 (5.8)</td>
</tr>
<tr>
<td>343 (13.5)</td>
<td>110 (6.7)</td>
</tr>
<tr>
<td>368 (14.5)</td>
<td>124 (7.6)</td>
</tr>
</tbody>
</table>

Grosor de 7.9 mm (5/16 pulg)

<table>
<thead>
<tr>
<th>D mm (pulg)</th>
<th>W mm (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 (2.75)</td>
<td>83 (3.25)</td>
</tr>
<tr>
<td>191 (7.5)</td>
<td>59 (3.6)</td>
</tr>
<tr>
<td>216 (8.5)</td>
<td>75 (4.6)</td>
</tr>
<tr>
<td>241 (9.5)</td>
<td>92 (5.6)</td>
</tr>
<tr>
<td>267 (10.5)</td>
<td>111 (6.8)</td>
</tr>
<tr>
<td>292 (11.5)</td>
<td>133 (8.1)</td>
</tr>
<tr>
<td>318 (12.5)</td>
<td>156 (9.5)</td>
</tr>
<tr>
<td>343 (13.5)</td>
<td>180 (11.0)</td>
</tr>
<tr>
<td>368 (14.5)</td>
<td>206 (12.6)</td>
</tr>
</tbody>
</table>

Grosor de 9.5 mm (3/8 pulg)

<table>
<thead>
<tr>
<th>D mm (pulg)</th>
<th>W mm (pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 (2.75)</td>
<td>83 (3.25)</td>
</tr>
<tr>
<td>191 (7.5)</td>
<td>70 (4.3)</td>
</tr>
<tr>
<td>216 (8.5)</td>
<td>90 (5.5)</td>
</tr>
<tr>
<td>241 (9.5)</td>
<td>110 (6.7)</td>
</tr>
<tr>
<td>267 (10.5)</td>
<td>133 (8.1)</td>
</tr>
<tr>
<td>292 (11.5)</td>
<td>159 (9.7)</td>
</tr>
<tr>
<td>318 (12.5)</td>
<td>185 (11.3)</td>
</tr>
<tr>
<td>343 (13.5)</td>
<td>215 (13.1)</td>
</tr>
<tr>
<td>368 (14.5)</td>
<td>247 (15.1)</td>
</tr>
</tbody>
</table>
TABLA C
Módulo de sección por cm³ (pulg³)

<table>
<thead>
<tr>
<th>TH mm (pulg)</th>
<th>203 (8)</th>
<th>229 (9)</th>
<th>254 (10)</th>
<th>279 (11)</th>
<th>305 (12)</th>
<th>330 (13)</th>
<th>356 (14)</th>
<th>381 (15)</th>
<th>406 (16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.76 (0.1875)</td>
<td>33 (2.0)</td>
<td>41 (2.51)</td>
<td>51 (3.10)</td>
<td>61 (3.75)</td>
<td>73 (4.46)</td>
<td>86 (5.24)</td>
<td>100 (6.08)</td>
<td>114 (6.98)</td>
<td>130 (7.94)</td>
</tr>
<tr>
<td>6.35 (0.25)</td>
<td>44 (2.66)</td>
<td>55 (3.37)</td>
<td>68 (4.16)</td>
<td>82 (5.03)</td>
<td>98 (5.99)</td>
<td>115 (7.03)</td>
<td>134 (8.15)</td>
<td>153 (9.36)</td>
<td>172 (10.5)</td>
</tr>
<tr>
<td>7.94 (0.3125)</td>
<td>55 (3.33)</td>
<td>69 (4.21)</td>
<td>85 (5.20)</td>
<td>103 (6.29)</td>
<td>123 (7.49)</td>
<td>144 (8.79)</td>
<td>167 (10.19)</td>
<td>192 (11.7)</td>
<td>218 (13.31)</td>
</tr>
<tr>
<td>9.52 (0.375)</td>
<td>66 (4.0)</td>
<td>83 (5.06)</td>
<td>102 (6.25)</td>
<td>124 (7.56)</td>
<td>148 (9.00)</td>
<td>173 (10.56)</td>
<td>201 (12.25)</td>
<td>230 (14.06)</td>
<td>262 (16.0)</td>
</tr>
<tr>
<td>11.11 (0.4375)</td>
<td>76 (4.67)</td>
<td>97 (5.9)</td>
<td>119 (7.29)</td>
<td>144 (8.82)</td>
<td>172 (10.5)</td>
<td>202 (12.32)</td>
<td>234 (14.29)</td>
<td>269 (16.4)</td>
<td>306 (18.66)</td>
</tr>
</tbody>
</table>
INSTALACIÓN DE LA GRÚA
MANUAL DE SERVICIO DE LA NBT40-1

TABLA D
Módulo de sección por cm³ (pulg³)

<table>
<thead>
<tr>
<th>D mm (pulg)</th>
<th>W mm (pulg)</th>
<th>76 (3)</th>
<th>89 (3.5)</th>
<th>102 (4)</th>
<th>114 (4.5)</th>
<th>W mm (pulg)</th>
<th>76 (3)</th>
<th>89 (3.5)</th>
<th>102 (4)</th>
<th>114 (4.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>216 (8.5)</td>
<td>5.7</td>
<td>(93)</td>
<td>105</td>
<td>(6.4)</td>
<td>115</td>
<td>(7.0)</td>
<td>126</td>
<td>(7.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241 (9.5)</td>
<td>110</td>
<td>(6.7)</td>
<td>121</td>
<td>(7.4)</td>
<td>133</td>
<td>(8.1)</td>
<td>146</td>
<td>(8.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>267 (10.5)</td>
<td>126</td>
<td>(7.7)</td>
<td>139</td>
<td>(8.5)</td>
<td>152</td>
<td>(9.3)</td>
<td>166</td>
<td>(10.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>292 (11.5)</td>
<td>144</td>
<td>(8.8)</td>
<td>159</td>
<td>(9.7)</td>
<td>174</td>
<td>(10.6)</td>
<td>187</td>
<td>(11.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>318 (12.5)</td>
<td>164</td>
<td>(10.0)</td>
<td>179</td>
<td>(10.9)</td>
<td>195</td>
<td>(11.9)</td>
<td>210</td>
<td>(12.8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>343 (13.5)</td>
<td>184</td>
<td>(11.5)</td>
<td>200</td>
<td>(12.2)</td>
<td>216</td>
<td>(13.2)</td>
<td>234</td>
<td>(14.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>368 (14.5)</td>
<td>205</td>
<td>(12.5)</td>
<td>223</td>
<td>(13.6)</td>
<td>239</td>
<td>(14.6)</td>
<td>257</td>
<td>(15.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>394 (15.5)</td>
<td>226</td>
<td>(13.8)</td>
<td>246</td>
<td>(15.0)</td>
<td>264</td>
<td>(16.1)</td>
<td>284</td>
<td>(17.3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D mm (pulg)</th>
<th>76 (3)</th>
<th>89 (3.5)</th>
<th>102 (4)</th>
<th>114 (4.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>216 (8.5)</td>
<td>161</td>
<td>(9.8)</td>
<td>177</td>
<td>(10.8)</td>
</tr>
<tr>
<td>241 (9.5)</td>
<td>188</td>
<td>(11.5)</td>
<td>206</td>
<td>(12.6)</td>
</tr>
<tr>
<td>267 (10.5)</td>
<td>218</td>
<td>(13.3)</td>
<td>238</td>
<td>(14.5)</td>
</tr>
<tr>
<td>292 (11.5)</td>
<td>247</td>
<td>(15.1)</td>
<td>271</td>
<td>(16.5)</td>
</tr>
<tr>
<td>318 (12.5)</td>
<td>280</td>
<td>(17.1)</td>
<td>305</td>
<td>(18.6)</td>
</tr>
<tr>
<td>343 (13.5)</td>
<td>315</td>
<td>(19.2)</td>
<td>341</td>
<td>(20.8)</td>
</tr>
<tr>
<td>368 (14.5)</td>
<td>351</td>
<td>(21.4)</td>
<td>379</td>
<td>(23.1)</td>
</tr>
<tr>
<td>394 (15.5)</td>
<td>388</td>
<td>(23.7)</td>
<td>418</td>
<td>(25.5)</td>
</tr>
</tbody>
</table>
PREPARACIÓN DEL CAMIÓN

Planifique la instalación meticulosamente antes de llevar a cabo trabajo alguno. Planifique la ubicación de la grúa en el chasis del camión para la proyección de los pesos finales de los ejes delantero y trasero y de la pluma.

Revise el peso final para verificar que el peso final del camión con la grúa, refuerzos, contrapeso y opciones tales como el plumin, etc., cumplan con las leyes aplicables.

Precauciones para la soldadura

Los componentes sensibles de la computadora del camión y la computadora del sistema de RCL de la grúa pueden dañarse cuando se efectúan soldaduras en el camión o grúa. Se deben tomar las siguientes precauciones antes de soldar en el camión o la grúa.

• Desconecte los cables de la batería del camión (positivo y negativo)
• Conecte la pinza de puesta a tierra de la máquina de soldar lo más cerca posible a la zona a ser soldada.

Colocación de la grúa en el camión

El instalador de la grúa deberá estar familiarizado con las leyes de peso de ejes y largo de máquina vigentes en el momento que se monta la grúa en el camión. Se deben considerar los puntos siguientes.

• Largo total: la mayoría de los estados limitan el largo máximo derecho de un camión a 12 m (40 pies). Si se utiliza un camión con distancia entre ejes demasiado larga, la máquina podría exceder este límite.
• Peso sobre los ejes: la mayoría de los estados admiten 20 000 lb (9072 kg) en un eje sencillo y 15 422 kg (34 000 lb) en ejes dobles al conducir sobre carreteras principales. Sin embargo, algunos estados restringen el peso sobre el eje a un valor menor en carreteras secundarias o en ciertas épocas del año. Conozca las leyes vigentes en su estado en cuanto a restricciones de peso.
• Proyección: las leyes que más restringen la proyección exigen una proyección máxima de 3 pies por la parte delantera del camión. Consulte los requisitos de su estado.
• Ley Federal de Puentes: la Ley Federal de Puentes vigente en la actualidad indica que para poder transportar 26 308 kg (58 000 lb) en un camión con cuatro ejes, los extremos de cualquiera de los grupos de ejes deberán estar separados un mínimo de 732 cm (24 pies) entre sí.

TDF, Bomba y Depósito

1. Seleccione la TDF según lo indicado en la sección Requisitos de la TDF. Vea "Requisitos de TDF" en la página 9-14. National Crane no suministra las TDF.
2. Instale la TDF y su mecanismo de cambio según las instrucciones del fabricante de la TDF. Si la TDF tiene marcha de retroceso, ésta deberá desactivarse para evitar que la bomba funcione en el sentido equivocado.

PRECAUCIÓN

La bomba se daña si se la hace girar en el sentido incorrecto.

3. Si se usan bridas de montaje incorporadas en la TDF, la bomba puede montarse directamente en la TDF. Asegúrese de que exista espacio libre suficiente para este tipo de montaje de la bomba. A veces el espacio es limitado y la bomba es impulsada a través de una línea impulsora. El largo máximo y el ángulo de la línea impulsora no deberán exceder las recomendaciones del fabricante. Las horquillas con junta universal en ambos extremos de la línea impulsora deberán estar paralelas entre sí. Seleccione el tamaño de las líneas impulsoras de modo que puedan transmitir la potencia máxima requerida por la bomba con seguridad. Vea "Requisitos de TDF" en la página 9-14. National Crane no suministra las líneas impulsoras.

4. Planifique la ubicación de la escuadra de montaje de la bomba y la línea impulsora, de modo que se mantenga un espacio libre amplio entre la bomba y el eje impulsor del camión o su sistema de escape. Sitúe la bomba de modo tal que las líneas hidráulicas puedan conectarse sin tener que darles dobleces mur cerrados, especialmente la línea de aspiración grande. Las escuadras de montaje de la bomba pueden fijarse a traviesas existentes del chasis, o se puede instalar una traviesa de un canal de 15.25 cm (6 pulg).

NOTA: Algunos de los adaptadores de tubería que se utilizan se han sellado por medio de dos secciones roscadas ahusadas, una macho y la otra hembra. Cuando estas dos roscas ahusadas se tocan, se sentirá un aumento repentino en la fuerza necesaria para enroscar un adaptador en el otro. Esto es cierto con todas las roscas ahusadas de tubería. El apriete adicional no sólo no aumenta el apriete de la junta, sino que puede dañar las conexiones e imposibilitar el armado correcto.

Otros adaptadores son del tipo de anillo “O” con reborde (ORB). Éstos se instalan enroscando primero la contratuerca a ras con la superficie de la rosca superior e instalando el adaptador en la lumbrera hasta que su tuerca toque la superficie de la lumbrera. Ajuste el adaptador en el sentido deseado y apriete la contratuerca.
La mayoría de los adaptadores de presión son tipo anillo "O" de superficie plana (ORFS). Un anillo "O" pequeño quedará comprimido entre los adaptadores macho y hembra de la junta. Asegúrese que el anillo "O" esté instalado en el adaptador macho y debidamente asentado en su ranura antes de armar y apretar los adaptadores.

5. Quite las cubiertas contra polvo de la entrada y la salida de la bomba y determine si los lados de aspiración y de presión de la bomba son los correctos mientras se gira la bomba en el mismo sentido de giro señalado por la flecha en la bomba. Si es necesario, gire la bomba en la escuadra de montaje de modo que el lado de aspiración quede hacia la lumbrera de aspiración del depósito.

6. Si se usa un montaje en eje impulsor, conecte el eje impulsor de la TDF a la bomba y a la TDF. Taladre un agujero de 7.9 mm de diámetro x 3 mm de profundidad (0.31 pulg de diámetro x 0.12 pulg de profundidad) en la parte plana del eje hexagonal en el extremo con la horquilla fija del eje impulsor para enganchar el tornillo de fijación de la horquilla. Se debe rectificar una zona plana pequeña en el D.E. del eje estriado de la bomba para enganchar el tornillo de fijación de la horquilla de la bomba. Aplique pasta selladora Loctite® y apriete los tornillos de fijación del eje. Engrase las juntas universales de la TDF.

REFUERZO DE LA EXTENSIÓN DEL CHASIS POSTERIOR

1. Vea la Resistencia de chasis del camión y la Tablas de módulo de sección. Mida el chasis del camión para determinar el módulo de sección. Si es necesario reforzarlo, utilice siempre acero de por lo menos 689 MPa (100 000 psi) de resistencia para reducir al mínimo la cantidad de refuerzo que se necesite. Utilice material de soldadura grado 90 para todas las soldaduras.

2. Quite las obstrucciones de la zona del chasis que será reforzada o extendida, un lado a la vez. Si las traviesas del chasis del camión están empernadas, retire los pernos. No retire ningún remache.

3. Si se utilizan remaches para asegurar las traviesas del chasis del camión, coloque el refuerzo (1, Figura 9-15) en el chasis del camión (4) y fíjelo en su lugar con una abrazadera.

 a. Marque la posición de los remaches (3) golpeando con un martillo el exterior del refuerzo sobre la posición de los remaches para que éstos hagan una marca en el lado inferior del refuerzo.

 b. Marque la posición aproximada de los anclajes de montaje de la grúa (5) en el refuerzo de modo que no existan obstrucciones.

 c. Retire el refuerzo y recórtale agujeros (2) para proporcionar espacio para los remaches.

4. Si el refuerzo se va a soldar al chasis del camión (4), quite los pernos de la traviesa (6).

 a. Ponga el refuerzo en el chasis del camión (4). Marque el patrón de agujeros del chasis del camión existente en el refuerzo y luego quite el refuerzo.

 b. Utilizando las marcas, corte el patrón de agujeros en el refuerzo (1). Asegúrese de dejar espacio para pasar libre de los anclajes de montaje de la grúa (5).

5. Fije el refuerzo con abrazaderas en el chasis del camión (4), instale los pernos de traviesa (6) que se quitaron previamente, y suelde al chasis del camión, como se ilustra en la Figura 9-16.

6. Si es necesario usar una pieza de refuerzo empernada, fíjela en su lugar con pinzas e instale los pernos (6) de traviesa que se retiraron previamente en los agujeros.

 a. Taladre a través de la pieza de refuerzo y del chasis del camión. Asegúrese de que se pueda pasar libremente por los anclajes de montaje (5) y fije el refuerzo en su lugar con los pernos.

 b. Vea la Figura 9-17 para las dimensiones y posiciones recomendadas de taladrado y empernado. Utilice pernos grado 8 de 5/8 pulg, taladre agujeros (7) de 15.5 mm (39/64 pulg) de diámetro, instale los pernos y apriételos según la tabla de valores de apriete dada en "Sujetadores y valores de apriete" en la página 1-7.
FIGURA 9-15

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Refuerzo</td>
</tr>
<tr>
<td>2</td>
<td>Agujeros de paso</td>
</tr>
<tr>
<td>3</td>
<td>Remaches</td>
</tr>
<tr>
<td>4</td>
<td>Chasis del camión</td>
</tr>
<tr>
<td>5</td>
<td>Anclajes de montaje</td>
</tr>
<tr>
<td>6</td>
<td>Pernos de traviesa</td>
</tr>
<tr>
<td>7</td>
<td>Agujeros</td>
</tr>
</tbody>
</table>

FIGURA 9-16

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agujeros de pernos de traviesa. Desplace los agujeros de soldaduras de botón ligeramente para que queden libres de los agujeros de traviesa.</td>
</tr>
<tr>
<td>2</td>
<td>Ubicación planificada de la placa de montaje. Las posiciones de las soldaduras de botón pueden cambiarse para que queden libres de la placa.</td>
</tr>
<tr>
<td>3</td>
<td>Agujeros de espacio libre para los remaches en la soldadura o en el refuerzo. Se pueden hacer soldaduras de entalladura para eliminar los agujeros de soldadura de botón.</td>
</tr>
<tr>
<td>4</td>
<td>Agujeros de 25.4 mm (1 pulg) de diámetro para soldaduras de botón</td>
</tr>
</tbody>
</table>
INSTALACIÓN DE LA GRÚA

MANUAL DE SERVICIO DE LA NBT40-1

FIGURA 9-17

50.8 mm (2 pulg) min
127 mm (5 pulg)
50.8 mm (2 pulg) min
101.6 mm 4 pulg.
203.2 mm 8 pulg.
7. Si el chasis hasta la suspensión trasera no satisface las especificaciones mínimas de RBM y módulo de sección, se lo puede reforzar con un ángulo de refuerzo, como se muestra en la Figura 9-18.

NOTA: Vea la Tabla B de módulo de sección en la página 9-18 para el tamaño requerido del ángulo de refuerzo.

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ángulo de refuerzo</td>
</tr>
<tr>
<td>2</td>
<td>Topes de resorte (2 por resorte)</td>
</tr>
<tr>
<td>3</td>
<td>Colgadores de resorte (4 por resorte)</td>
</tr>
<tr>
<td>4</td>
<td>Refuerzo debajo de grúa</td>
</tr>
<tr>
<td>5</td>
<td>Piezas de refuerzo de recorte (la cantidad varía)</td>
</tr>
<tr>
<td>6</td>
<td>Chasis del camión existente</td>
</tr>
<tr>
<td>7</td>
<td>Barra inferior de refuerzo</td>
</tr>
<tr>
<td>8</td>
<td>Barra superior de refuerzo</td>
</tr>
<tr>
<td>9</td>
<td>Soldadura de tope</td>
</tr>
</tbody>
</table>

a. Quite todo el equipo de fácil desmontaje, como topes de resorte (2), del chasis.

b. Coloque el ángulo de refuerzo (1) contra el refuerzo debajo del refuerzo de la grúa (4). Marque las zonas que requieren corte de manera que el ángulo de refuerzo se deslice hacia arriba alrededor de los colgadores de resorte (3) y contra el chasis del camión existente (6) y el refuerzo delantero.
c. Recorte las zonas marcadas en la pata larga del ángulo de refuerzo a la profundidad que sea necesaria. Instale el ángulo de refuerzo desde la parte inferior del chasis del camión existente para que entre en contacto o con la parte inferior del chasis del camión existente (6, Figura 9-18) o con las escuadras de los colgadores de resorte, si se extienden por debajo del chasis del camión existente.

8. Si el ángulo de refuerzo se va a soldar al chasis del camión, recorte el patrón de agujeros de soldadura de botón de la forma ilustrada en la Figura 9-16, e instálelo en el chasis del camión existente.

a. Deslice el ángulo de refuerzo (1) hacia arriba desde abajo, colóquelo contra el refuerzo debajo de la grúa (4) y suelde a tope (9) el ángulo de refuerzo al refuerzo debajo de la grúa.

b. Vuelva a colocar tantas de las zonas recortadas de los colgadores de resorte como sea posible. Use el material desprendido de los recortes (paso 7), y fije estas piezas con soldaduras a tope.

c. Coloque la barra de refuerzo superior (8) sobre el chasis del camión existente y suelde de modo alternado, como se indica en la Figura 9-18.

9. Si el ángulo de refuerzo va a empernar, taladre el patrón de agujeros según se muestra en la Figura 9-17 e instálelo.

a. Instale y suelde las barras de refuerzo (7 y 8) en su lugar para reforzar las zonas recortadas de los colgadores de resorte (5, Figura 9-18) y la zona soldada.

b. Las barras deben ser del mismo grosor, ancho y resistencia que el reborde del ángulo de refuerzo. La barra (7) debe ser del largo suficiente como para extenderse por lo menos 152 mm (6 pulg) más allá de cualquiera de los lados de las zonas de soldadura o recorte. Suelde estas barras de refuerzo al ángulo de refuerzo usando soldaduras en sentido longitudinal. No suelde a lo largo de las bridas.

c. Vuelva a instalar todos los equipos que se retiraron.

10. Mida el chasis posterior del chasis del camión existente.

NOTA: El chasis posterior que se requiere depende de la ubicación de la grúa en el chasis del camión. Vea la sección de configuración de montaje para las disposiciones sugeridas.

a. Calcule la distribución de peso de toda la máquina para determinar la ubicación del centro de rotación de la grúa con respecto al centro de los ejes traseros. El chasis posterior debe extenderse un mínimo de 196 cm (77 pulg) por detrás de la línea central de rotación de la grúa. Si el AF es excesivamente largo, recorte el excedente y retire cualquier traviesa de la parte trasera del chasis del camión.

b. Si el AF es demasiado corto, será necesario alargarlo. Utilice canales fabricados con material de 689 MPa (100 000 psi) de resistencia cuyo tamaño sea igual al del chasis del camión. Suelde estos canales a los extremos de los canales existentes del chasis del camión. Bisele los extremos de los canales para obtener juntas 100 % soldadas con material de soldadura grado 90. Fabrique un canal interior del mismo grosor que los canales del chasis del camión que cubra la junta soldada por al menos 30 cm (12 pulg) en cada lado de la junta. Fije este canal por soldaduras de botón al interior del chasis del camión y después fije el borde inferior de las bridas superior e inferior con soldaduras salteadas a las bridas del chasis del camión.

MONTAJE DE LA GRÚA

PELIGRO

Es obligatorio inspeccionar y volver a apretar los pernos de fijación del cojinete de giro y de la caja de torsión después de las primeras 300 horas de funcionamiento de la grúa y cada 500 horas de allí en adelante. Los pernos podrían soltarse y permitir la separación de la grúa del vehículo, lo cual dañaría la grúa y podría causarle lesiones o la muerte al personal.

Compruebe que el camión se haya configurado para satisfacer los requisitos mínimos de resistencia del camión, TDF y chasis, según se indicó previamente en esta sección. La grúa se monta en el camión de la manera siguiente: Vea la Figura 9-19 para los pasos siguientes.

NOTA: Todas las soldaduras que se utilicen para asegurar la grúa al chasis del camión deberán ser de grado AWS 90 o superior.

1. Ponga el conjunto de grúa en el chasis del camión. Vea “Colocación de la grúa en el camión” en la página 9-21.

2. Instale y suelde las dos placas de montaje superiores delanteras (1, vista D) y las dos placas de montaje superiores centrales (4, vista E) en el bastidor de la caja de torsión (8).

3. Instale dos barras de anclaje (2, vista A) en cada placa de montaje superior delantera del lado izquierdo y derecho.

4. Instale una barra de anclaje (2, vista B) en cada placa de montaje superior central derecha e izquierda.

5. Instale las placas de montaje inferiores (3) en las placas de anclaje. Instale los pernos y tuercas y apriételos con la mano.
6. Alinee y coloque cada placa de montaje inferior (3, vista A y vista B) directamente debajo de las placas de montaje superiores. Perfore cuatro agujeros de 5/8 pulg a través de cada placa de montaje inferior, a través del chasis del camión (7), usando los agujeros existentes (5) en la placa de montaje inferior para ubicar los agujeros en el chasis del camión.

Vea la Figura 9-20 para los pasos siguientes.

NOTA: Coloque la placa de la tira trasera con el doblez de la placa hacia adentro o hacia afuera dependiendo del ancho del chasis del camión.

7. Ubique y suelde la placa de la tira trasera (7, vista F) y la placa del collar (9, vista F) al bastidor de la caja de torsión (8). Vea la Figura 9-20 para las dimensiones de localización y los requisitos de soldadura.

8. Corte la traviesa (11, vista G) para que calce dentro del chasis del camión; asegúrese de incluir el ancho de las dos placas de extremo (12).

9. Suelde las dos placas de extremo a la traviesa.

10. Coloque el conjunto de traviesa soldado en el chasis del camión, en el centro de ambas placas de tira (6), y suéldelo por puntos al chasis del camión.

11. Use los agujeros para pernos existentes (10, vista F) en la placa de tira trasera como una plantilla para ubicar y perforar cuatro agujeros de 5/8 pulg en el chasis del camión y a través de las placas de extremo.

FIGURA 9-19

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Placa de montaje delantera superior (se usan 2)</td>
</tr>
<tr>
<td>2</td>
<td>Barra de anclaje (se usan 8)</td>
</tr>
<tr>
<td>3</td>
<td>Agujero de placa de montaje inferior</td>
</tr>
<tr>
<td>4</td>
<td>Placa de montaje central superior (se usan 2)</td>
</tr>
<tr>
<td>5</td>
<td>Agujero de placa de montaje inferior</td>
</tr>
<tr>
<td>6</td>
<td>Placa de tira trasera (se usan 2)</td>
</tr>
<tr>
<td>7</td>
<td>Chasis del camión</td>
</tr>
<tr>
<td>8</td>
<td>Bastidor de la caja de torsión</td>
</tr>
<tr>
<td>9</td>
<td>Placa de collar (se usan 2)</td>
</tr>
<tr>
<td>10</td>
<td>Agujero de placa de tira trasera</td>
</tr>
<tr>
<td>11</td>
<td>Traviesa</td>
</tr>
<tr>
<td>12</td>
<td>Placa de extremo (se usan 2)</td>
</tr>
<tr>
<td>13</td>
<td>Espaciador</td>
</tr>
</tbody>
</table>

134.9 mm a 312.7 mm (5.31 pulg a 12.31 pulg)

406.4 mm (16 pulg) min. a 431.8 mm (17 pulg) máx.

711.2 mm (28 pulg) min. a 812.8 mm (32 pulg) máx.
<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Placa de montaje delantera superior (se usan 2)</td>
</tr>
<tr>
<td>2</td>
<td>Barra de anclaje (se usan 8)</td>
</tr>
<tr>
<td>3</td>
<td>Agujero de placa de montaje inferior</td>
</tr>
<tr>
<td>4</td>
<td>Placa de montaje central superior (se usan 2)</td>
</tr>
<tr>
<td>5</td>
<td>Agujero de placa de montaje inferior</td>
</tr>
<tr>
<td>6</td>
<td>Placa de tira trasera (se usan 2)</td>
</tr>
<tr>
<td>7</td>
<td>Chasis del camión</td>
</tr>
<tr>
<td>8</td>
<td>Bastidor de la caja de torsión</td>
</tr>
<tr>
<td>9</td>
<td>Placa de collar (se usan 2)</td>
</tr>
<tr>
<td>10</td>
<td>Agujero de placa de tira trasera</td>
</tr>
<tr>
<td>11</td>
<td>Traviesa</td>
</tr>
<tr>
<td>12</td>
<td>Placa de extremo (se usan 2)</td>
</tr>
<tr>
<td>13</td>
<td>Espaciador</td>
</tr>
</tbody>
</table>
Conexión eléctrica con el camión

Vea la Figura 9-21 para los pasos siguientes.

Efectúe la conexión eléctrica entre la grúa y el camión usando los procedimientos y la información siguientes.

NOTA: La instalación eléctrica siguiente se basa en una instalación de motor Cummins ISB, ISX, ISC o ISL. Comuníquese con National Crane para las conexiones eléctricas en camiones que tienen modelos de motor distintos a los que se señalan arriba.

1. Trabajando en la parte trasera del camión, instale el conjunto de luces de freno/cola izquierdo (1) y el conjunto de luces de freno/cola derecho (2) en la placa de cubierta de luces (3). Empalme el cable 1403 de la luz de posición con el cable de la luz de cola del camión en el arnés de luces traseras del camión usando un conector de empalme con tubo termoencogible para conectar las luces de posición traseras (4), luces de posición triples (5) y las luces de la matrícula (6). Asegure los cables sueltos con amarras de cable.

2. Empalme el cable 28 de la alarma de retroceso/movimiento con el cable de luz de retroceso en el arnés de luces traseras del camión usando un conector de empalme con tubo termoencogible. Instale la alarma de retroceso/movimiento (7) en la placa de cubierta de luces. Asegure los cables sueltos con amarras de cable.

3. Conecte el cable 52 (señal de arranque de grúa) al solenoide del arrancador, no el interruptor de encendido del camión.

4. Pase el cable 112 (señal de accesorios de camión) del armés (x) de alambrado principal de la grúa por el tabique del camión y hacia dentro de la cabina del camión, detrás del tablero de instrumentos (x). Conecte el cable 112 al cable de encendido del interruptor de encendido.

NOTA: Si hay dos cables de encendido presentes en el interruptor de encendido, el cable 901 debe conectarse a ambos cables.

5. Pase el cable 901 (señal de encendido de la grúa) del armés de alambrado principal de la grúa por el tabique del camión y hacia dentro de la cabina del camión, detrás del tablero de instrumentos. Instale el receptáculo 7826000087 en el cable 901 e instálelo en la cavidad 2 del enchufe 7709000815. Instale el receptáculo 7826000087 e instálelo en la cavidad 1 del enchufe. Empalme el cable de la cavidad 1 y el cable rojo 142259 con los cables en el interruptor de encendido. Pase el cable rojo hacia afuera a través del tabique de la cabina del camión.

6. Empalme el cable 475 de puesta a tierra de acelerador remoto en el cable presente en la clavija 32 (8) del conector J2 del ECM usando un conector de empalme con tubo termoencogible.

7. Empalme el cable 473 de alimentación de +5V del acelerador remoto en el cable presente en la clavija 08 (9) del conector J2 del ECM usando un conector de empalme con tubo termoencogible.

8. Retire el cable presente en la clavija 63 (10) del conector J2 del ECM y asegúrelo en el armés de alambrado J2. Instale la terminal 80055236 en el cable 474 de señal de acelerador remoto. Inserte el conector y el cable en la cavidad de la clavija 63 del conector J2 del ECM.

NOTA: Los cables 477, 478 y 479 (no se ilustran) no se usan cuando el TPS remoto está conectado directamente al ECM. Los cables deben almacenarse y asegurarse en el armés de la caja de torsión.

9. Si está presente, retire el cable en la clavija 67 (11) del conector J2 del ECM y asegúrelo en el armés de alambrado J2. Instale la terminal 80055236 en el cable naranja de activación del acelerador. Inserte el borne y cable naranja de activación del acelerador en la cavidad de la clavija 67 del conector J2 del ECM.

Vea la Figura 9-22 para los pasos siguientes.

NOTA: El cable 52 debe instalarse en el solenoide del arrancador, no el interruptor de encendido del camión.
10. Instale el relé de activación de acelerador (1, Figura 9-23) en el lado del motor del tabique. Conecte el cable naranja (2) de activación del acelerador al borne 87 del relé. Empalme el cable (3) de alimentación eléctrica del borne 86 del relé al cable 901. Empalme el cable naranja (4) del indicador de TDF en el circuito de indicación de TDF y conéctelo a los bornes 85 y 30 del relé. Todos los empalmes deben hacerse usando un conector de empalme con tubo termoencogible (5).

11. Instale el relé del indicador de advertencia del motor (6, Figura 9-24) en el lado del motor del tabique. Pase el cable rojo (7) que se empalmó con el cable 901 en el paso 5 por el tabique del camión y conéctelo a los bornes 30 y 85 del relé. Conecte el cable 1331 (8) al borne 87 del relé del indicador de advertencia del motor. Empalme el cable amarillo (9) con el cable presente en la clavija 72 (12, Figura 9-22) del conector J2 del ECM y conecte el extremo libre al borne 86 del relé del indicador de advertencia del motor. Todos los empalmes deben hacerse usando un conector de empalme con tubo termoencogible.

Conexión de J1939

Lo siguiente se basa en el sistema CAN J1939 que se encuentra en los camiones Kenworth y Peterbilt (PACCAR).

NOTA: Si la grúa está equipada con la opción A92.2, el módulo de definición de conectores debe interconectarse con el ECM de motor del camión a través de CAN J1939. Si la grúa no está equipada con la opción A92.2, continúe con el paso 22.

La ubicación de las resistencias de terminación de CAN J1939 en los pasos siguientes se basan en el sistema CAN J1939 que se encuentra en los camiones Kenworth y Peterbilt. Las ubicaciones de las resistencias de terminación varían entre los fabricantes de camiones. Por lo general, una resistencia de terminación se ubica en el tablero de instrumentos o junto al tablero de distribución eléctrica, y una segunda resistencia de terminación está cerca del ECM. Consulte al fabricante del camión o la documentación de servicio del camión para las ubicaciones de las resistencias de terminación J1939.
1. Pase el cable J1939 hasta el punto de conexión deseado en el camión.

Vea la Figura 9-25 para los pasos siguientes.

3. Desconecte el conector macho de J1939 (1) del conector hembra de J1939 (2) y guarde la resistencia de terminación (3) adentro del conector macho.

4. Acople el conector hembra J1939 al conector de puente macho (4).

5. Asegúrese que la resistencia de terminación se vuelva a instalar en el conector macho J1939 e instale el conector de puente hembra (5) en el conector macho J1939.

6. Conecte el conector J1939 de la grúa al armés de puente de J1939,

7. Retire la resistencia de terminación ubicada en el lado derecho adentro del tablero del chasis de la grúa. Use un multímetro para probar si hay 60 ohmios de resistencia a través de los cables 1289 y 1290.
 - Si hay 60 ohmios de resistencia, retire la resistencia de terminación del chasis de la grúa e instale un conector de 3 conductos ciego.
 - Si hay 120 ohmios presentes, vuelva a instalar la resistencia de terminación en el chasis de la grúa.

8. Si hay una indicación de resistencia distinta, comuníquese con Manitowoc Crane Care para más información.

9. Conecte los cables de alimentación (1, 2, 3 y 7) al borne positivo de la batería.

10. Conecte los cables a tierra (51) al borne negativo de la batería del camión.

11. Use Cummins INSITE® para cambiar los siguientes parámetros en el ECM utilizando la información en la tabla a continuación.

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Valor nuevo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palanca o pedal de acelerador remoto</td>
<td>Habilitación</td>
</tr>
<tr>
<td>Modo de interruptor de palanca o pedal de acelerador remoto</td>
<td>Pedal de acelerador remoto con verificación de transición</td>
</tr>
<tr>
<td>Fuente de velocidad del vehículo</td>
<td>Velocidad máxima del motor sin VSS</td>
</tr>
<tr>
<td>Tipo de gobernador</td>
<td>Velocidad variable 1</td>
</tr>
</tbody>
</table>

Conexión de bomba hidráulica

PRECAUCIÓN

Verifique que la válvula de compuerta de la línea de retorno esté abierta antes de arrancar el motor y engranar la bomba, de lo contrario se podría dañar la bomba.

Vea la Figura 9-27 para los pasos siguientes.

La presión del sistema hidráulico es suministrada por una bomba hidráulica (1, Figura 9-27) que se monta en la toma de fuerza (TDF) (8) del camión.

Para la instalación inicial de la bomba, use el procedimiento siguiente:

1. La bomba hidráulica incorpora bridas de montaje y puede empernarse directamente a la TDF. Verifique que exista espacio libre suficiente para este tipo de montaje de la bomba.
2. Si la bomba hidráulica es impulsada por una línea impulsora, se deberá instalar un montaje de bomba o empernar la bomba a una traviesa del chasis existente.

3. Es necesario instalar una escuadra de montaje de modo que se pueda asegurar la escuadra de montaje trasera de la bomba.

5. No coloque la bomba hidráulica a más de 107 cm (42 pulg) de la TDF. No exceda un ángulo de 7° de la línea impulsora y asegúrese de que las juntas universales en ambos extremos del eje impulsor estén paralelas entre sí.

6. Planifique la ubicación del montaje de la bomba hidráulica y de la línea impulsora para obtener un espacio libre adecuado entre la bomba y el eje impulsor o el sistema de escape del camión.

7. Sitúe la bomba de modo tal que las líneas hidráulicas puedan conectarse sin dobleces muy cerrados, especialmente la línea de aspiración grande del depósito.

8. Para la instalación de la línea impulsora, instale el montaje de la bomba hidráulica en el chasis del camión.

10. Si se utiliza la configuración que se ilustra en la Figura 9-27, asegúrese de poner la lumbrera de vaciado de la caja (2) en el punto más alto sobre el nivel del suelo.

11. Conecte la brida de montaje de la bomba a la TDF o al montaje de la bomba hidráulica en el camión.

12. Apriete las tuercas de la brida de montaje a un par de apriete de 222 Nm (50 lb-pie).

13. Instale la escuadra de montaje trasera de la bomba hidráulica a la escuadra de montaje del camión.

NOTA: Se usan adaptadores con reborde y anillo “O” para sellar las conexiones de las líneas hidráulicas. Compruebe que el anillo “O” se encuentre en su ranura antes de apretarlo.

14. Quite las tapas contra polvo de las lumbreras de entrada y de salida de la bomba hidráulica e instale los adaptadores y líneas hidráulicas, como se ilustra en la Figura 9-27.

NOTA: La Figura 9-27, vista A, muestra el lado izquierdo (conductor) de la instalación de la bomba hidráulica y la vista B muestra el lado derecho (pasajero) de la instalación de la bomba hidráulica.

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bomba hidráulica</td>
</tr>
<tr>
<td>2</td>
<td>Lumbrera de vaciado de la caja</td>
</tr>
<tr>
<td>3</td>
<td>Manguera - Lumbrera N° 3 del adaptador giratorio</td>
</tr>
<tr>
<td>4</td>
<td>Manguera - Depósito hidráulico</td>
</tr>
<tr>
<td>5</td>
<td>Manguera - Válvula de estabilizador delantero, lumbrera T</td>
</tr>
<tr>
<td>6</td>
<td>Manguera - Válvula de estabilizador delantero, lumbrera P</td>
</tr>
<tr>
<td>7</td>
<td>Manguera - Válvula de estabilizador delantero, lumbrera LS</td>
</tr>
<tr>
<td>8</td>
<td>TDF del camión</td>
</tr>
<tr>
<td>9</td>
<td>Válvula reductora de presión de estabilizadores</td>
</tr>
</tbody>
</table>

FIGURA 9-27
Arranque inicial de la bomba

1. Llene el depósito con el aceite hidráulico correcto hasta la marca de nivel alto en la mirilla.
2. Verifique que las válvulas de entrada estén abiertas para impedir la cavitación o aireación de la bomba hidráulica.
3. Vierta aceite hidráulico en la lumbrera de vaciado de la caja para llenar la caja de la bomba hidráulica. Vuelva a instalar el adaptador y a conectar la manguera de vaciado de la caja.
4. Llene la línea de entrada del depósito a la bomba hidráulica. Revise la línea para verificar que los adaptadores estén apretados correctamente para evitar fugas de aire.
5. Inspeccione la manguera de vaciado de la caja en busca de fugas.
6. Instale un manómetro en la lumbrera de presión de la válvula de control de sentido (DCV).
7. Mientras observa el manómetro, arranque el motor del camión y acelere el motor a ralentí hasta que el manómetro registre presión. La presión debe estar entre 51.7 bar y 55.1 bar (750 psi y 800 psi). Si la bomba hidráulica no acumula presión dentro de este rango, apague el motor y determine la causa.
8. Si la presión del sistema es correcta, haga funcionar el sistema bajo una carga liviana durante cinco a diez minutos.
11. Verifique o ajuste la presión de la válvula de alivio de detección de carga. Vea “Ajuste de presión de la válvula de alivio de detección de carga” en la página 2-23.
12. Apague el motor, alivie toda la presión hidráulica y desconecte el manómetro. Revise el nivel de aceite hidráulico en el depósito y llene si es necesario.

CALIBRACIÓN DEL RCL

Después de haber instalado la grúa y haber completado todas las conexiones eléctricas e hidráulicas, calibre el RCL. Calibre el RCL según se describa en el manual del RCL titulado Manual de calibración/servicio.

PROCEDIMIENTO DE RODAJE INICIAL DE LA GRÚA

1. Estacione la grúa en una zona despejada que permita accionar todas las funciones de la grúa.
2. Active la TDF y efectúe lo siguiente:
 - Arranque el motor del camión desde la cabina de la grúa.
 - Programe el RCL.
 - Haga funcionar el motor del camión a ralentí.
 - Conecte el interruptor de alimentación de la grúa y accione la grúa y los estabilizadores a través de todas sus funciones por lo menos seis veces para purgar el aire de los cilindros.
 - Accione las válvulas de control lentamente con el motor del camión a ralentí y accione cada cilindro a través de su carrera completa cada vez.
 - Verifique que el movimiento de los estabilizadores y de la pluma corresponda con el sentido indicado en los interruptores y palancas.
 - Consulte las secciones de los sistemas hidráulico y eléctrico y los diagramas esquemáticos hidráulico y eléctrico de este manual, de ser necesario.

NOTA: Añada aceite al depósito según se requiera para impedir que entre aire al sistema.

NOTA: El ECM del camión debe programarse correctamente de modo que las rpm máximas del motor en modo de acelerador remoto proporcionen la velocidad máxima de entrada de la bomba.

3. Ajuste el acelerador según la relación entre la velocidad del motor y la de la TDF para lograr la velocidad correcta de la bomba hidráulica.
4. Una vez que se hayan hecho funcionar todos los cilindros por seis ciclos completos, almacene la grúa con los estabilizadores retraídos. El nivel de aceite deberá estar visible en la marca de lleno de la mirilla.
5. Lleve a cabo la prueba de estabilidad y elevación.

NOTA: El procedimiento de rodaje inicial de la grúa deberá completarse antes de iniciar la prueba de estabilidad.

6. Después de completar las pruebas de elevación y estabilidad, revise el par de apriete de todos los pernos de cojinete, de montaje y de las abrazaderas de cables.
7. Mida la altura total de la grúa y del camión. Coloque un aviso que indique la altura total dentro de la cabina del camión para que el conductor esté informado de ella.

PRUEBA DE ESTABILIDAD

El propósito de la prueba de estabilidad es verificar que la carga nominal pueda levantarse con un factor de seguridad contra vuelcos del 85 %. Con un factor de seguridad contra vuelcos de 85 %, la grúa puede levantar una carga nominal y estar en una condición de vuelco de 85 % o menos.
Es necesario efectuar una prueba de estabilidad en cada máquina terminada para determinar el factor de seguridad contra vuelcos de 85 %. Proceda de la siguiente manera:

1. Coloque la máquina a ser probada sobre una superficie firme y nivelada. Coloque soportes debajo de los flotadores de estabilizadores, de ser necesario.

2. Con la pluma en el descanso de pluma, eleve y nivele la máquina sobre los estabilizadores con todas las ruedas arriba del suelo. Consulte el manual del operador. Emplace el gato delantero (si lo tiene).

3. Para determinar si la máquina tiene un factor de seguridad contra vuelcos de 85 %, es necesario levantar cargas de prueba de estabilidad de 1.176 veces la carga nominal que se muestra en la Tabla 9-3.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Largo de pluma</th>
<th>Radio de carga</th>
</tr>
</thead>
<tbody>
<tr>
<td>40103-1 (caja torsión estándar)</td>
<td>91</td>
<td>85</td>
</tr>
<tr>
<td>40103-1 (caja torsión ext.)</td>
<td>103</td>
<td>100</td>
</tr>
<tr>
<td>40127-1 (caja torsión estándar)</td>
<td>115</td>
<td>110</td>
</tr>
<tr>
<td>40127-1 (caja torsión ext.)</td>
<td>127</td>
<td>110</td>
</tr>
<tr>
<td>40142-1 (caja torsión estándar)</td>
<td>88</td>
<td>40</td>
</tr>
<tr>
<td>40142-1 (caja torsión ext.)</td>
<td>142</td>
<td>80</td>
</tr>
<tr>
<td>45103-1 (caja torsión estándar)</td>
<td>91</td>
<td>85</td>
</tr>
<tr>
<td>45103-1 (caja torsión ext.)</td>
<td>103</td>
<td>100</td>
</tr>
<tr>
<td>45127-1 (caja torsión estándar)</td>
<td>79</td>
<td>35</td>
</tr>
<tr>
<td>45127 (caja torsión ext.)</td>
<td>79</td>
<td>35</td>
</tr>
<tr>
<td>45142-1 (caja torsión estándar)</td>
<td>74</td>
<td>50</td>
</tr>
<tr>
<td>45142-1 (caja torsión ext.)</td>
<td>128</td>
<td>65</td>
</tr>
<tr>
<td>45142-1 (caja torsión estándar)</td>
<td>74</td>
<td>45</td>
</tr>
<tr>
<td>45161-1 (caja torsión ext.)</td>
<td>101</td>
<td>50</td>
</tr>
<tr>
<td>45161 (caja torsión ext.)</td>
<td>38</td>
<td>35</td>
</tr>
<tr>
<td>36103-1 (caja torsión estándar)</td>
<td>91</td>
<td>80</td>
</tr>
<tr>
<td>36103-1 (caja torsión ext.)</td>
<td>103</td>
<td>95</td>
</tr>
<tr>
<td>36127-1 (caja torsión estándar)</td>
<td>91</td>
<td>80</td>
</tr>
<tr>
<td>36127-1 (caja torsión ext.)</td>
<td>103</td>
<td>95</td>
</tr>
<tr>
<td>36127-1 (caja torsión estándar)</td>
<td>115</td>
<td>85</td>
</tr>
<tr>
<td>36127-1 (caja torsión ext.)</td>
<td>127</td>
<td>105</td>
</tr>
<tr>
<td>36127-1 (caja torsión ext.)</td>
<td>67</td>
<td>30</td>
</tr>
</tbody>
</table>

PELIGRO

Las cargas usadas para las pruebas de estabilidad ponen la grúa a punto de volcarse. Mantenga la carga lo más cerca posible al suelo. El control de la posición de la pluma es crítico. No gire las cargas de prueba más allá del radio nominal. Si la grúa empieza a volcarse y el ángulo de la pluma es demasiado bajo, la grúa se volcará.
NOTA: Se requieren dos cargas de prueba para asegurar que la grúa sea estable sobre sus costados y su parte trasera.

NOTA: Tenga cuidado especial al efectuar la prueba de estabilidad si la grúa está provista de una extensión de pluma. La prueba de estabilidad puede efectuarse con el pluma en la posición de almacenamiento en un costado de la pluma principal, o fuera de ella.

Asegúrese de seleccionar la tabla de capacidades de carga correcta; las tablas están tituladas con extensión almacenada o sin extensión.

Las condiciones de las pruebas de estabilidad representan sobrecargas en posiciones de la grúa en las que el peso de la pluma y la ubicación del centro de gravedad comprenden gran parte del momento de vuelco. Se debe tener mucho cuidado para controlar la posición de la pluma y mantener la carga del gancho cerca del suelo. No se debe permitir que las cargas de prueba giren más allá del radio nominal. Si se permite que se inicie un vuelco causado por la carga y el ángulo de la pluma se reduce demasiado, el peso de la pluma puede causar el vuelco de la unidad.

PELIGRO

Las condiciones de las pruebas de estabilidad representan sobrecargas en posiciones de la grúa en las que el peso de la pluma y la ubicación del centro de gravedad comprenden gran parte del momento de vuelco. Se debe tener mucho cuidado para controlar la posición de la pluma y mantener la carga del gancho cerca del suelo. No se debe permitir que las cargas de prueba giren más allá del radio nominal. Si se permite que se inicie un vuelco causado por la carga y el ángulo de la pluma se reduce demasiado, el peso de la pluma puede causar el vuelco de la unidad.

NOTA: Asegúrese que los pesos que se levanten sean precisos. Un aumento del 1 % en el peso de la carga puede requerir un aumento del 10 % en el peso necesario para la prueba de estabilidad.

NOTA: Los siguientes ejemplos de prueba de estabilidad muestran el largo de la pluma, el radio y las capacidades de elevación; estos números deben utilizarse solo para la prueba de estabilidad de ejemplo siguiente. No tienen el propósito ni se deben utilizar para la prueba de estabilidad de esta máquina.

Siempre consulte la tabla de capacidades de carga provista con su máquina para el largo, el radio y la capacidad de la pluma.

ejemplo: Carga de prueba 1 - NBT40-1 sin extensión

- NBT40-1 - Pluma de 142 pies, 5 secciones, sin extensión, estabilizadores totalmente extendidos, capacidad a:
 - 43.3 m (142 pies) de largo de pluma
 - 24.4 m (80 pies) de radio
 - 1429 kg (3150 lb) de peso, según tabla de capacidades

- Carga para prueba de estabilidad (sin extensión almacenada):
 - $1429 \text{ kg} \times 1.176 = 1681 \text{ kg} (3150 \text{ lb} \times 1.176 = 3704 \text{ lb})$

ejemplo: Carga de prueba 2 - NBT45-1 con extensión almacenada

- NBT45-1 - Pluma de 127 pies, 5 secciones, con extensión almacenada, estabilizadores totalmente extendidos, capacidad a:
 - 38.7 m (127 pies) de largo de pluma
 - 25.9 m (85 pies) de radio
 - 1384 kg (3050 lb) de peso, según tabla de capacidades

- Carga para prueba de estabilidad (con extensión almacenada):
 - $1384 \text{ kg} \times 1.176 = 3440.6 \text{ kg} (3050 \text{ lb} \times 1.176 = 3587 \text{ lb})$

4. Sobre el costado:

- Arme la primera carga para prueba de estabilidad de la forma descrita anteriormente en un punto cercano de la grúa.
- Mida la distancia del radio de la carga desde el centro de rotación directamente hacia un costado de la máquina.
- Extienda la pluma al largo especificado.
- Eleve la carga para prueba de estabilidad levemente sobre el suelo (no más de 0.3 m [1 pie]).
- Baje la pluma lentamente mientras se enrolla el cable del malacate para trasladar la carga hasta el radio de carga estipulado.
- Mueva la carga muy lentamente al acercarse al radio de carga para evitar que la carga para prueba de estabilidad no se mueva más allá del radio de carga. Si se puede evitar que la carga de prueba toque el suelo cuando llega al radio de carga, la máquina es estable por el costado probado.
- Gire lentamente la carga 360 grados para asegurarse de que la carga para prueba de estabilidad sea estable directamente sobre los dos costados, la parte trasera y la parte delantera de la máquina.

5. Sobre la parte trasera:

- Arme la segunda carga para prueba de estabilidad de la forma descrita anteriormente en un punto cercano de la grúa.
- Mida la distancia del radio de la carga desde el centro de rotación directamente hacia la parte trasera de la máquina.
• Extienda la pluma al largo especificado y levante la carga para prueba levemente sobre el suelo (no más de 0.3 m [1 pie]).
• Baje la pluma mientras se enrolla el cable del malacate para trasladar la carga para prueba de estabilidad hasta el radio de carga estipulado.
• Mueva la carga muy lentamente al acercarse al radio de carga para evitar que la carga para prueba de estabilidad no se mueva más allá del radio de carga. Si se puede evitar que la carga de prueba toque el suelo cuando viaja al radio de estabilidad, la máquina es estable por la parte trasera.
• Gire lentamente la carga para prueba de estabilidad 360 grados para asegurarse de que la carga sea estable directamente sobre los dos costados, la parte trasera y la parte delantera de la máquina.

6. Si la máquina muestra inestabilidad, es necesario añadir contrapeso.
• Añada peso en el parachoque delantero o en la parte delantera de la base inferior, si la grúa muestra inestabilidad hacia la parte trasera.
• Añada peso cerca de la línea central de rotación si la grúa muestra inestabilidad hacia un costado.

CONTRAPESO

Cada grúa modelo NBT40-1 y NBT45-1 está equipada con una combinación diferente de contrapesos retirables. Vea la Figura 9-29 y la tabla para la combinación correcta de contrapesos de la grúa.

NOTA: La grúa modelo NBT36-1 no está equipada con un contrapeso.

Use solamente las combinaciones de placas de contrapeso que se muestran en la siguiente Tabla 9-4 de contrapesos y en la Figura 9-29.

Cada placa de contrapeso se puede identificar por el número de pieza y el peso estampados (1, Figura 9-28) en el costado de la placa.

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Número de pieza y ubicación del peso estampado</td>
</tr>
<tr>
<td>2</td>
<td>Insertos de elevación</td>
</tr>
</tbody>
</table>

PELIGRO

No agregue material ni cambie la configuración de los contrapesos para aumentar la capacidad de la grúa.

Se pueden producir lesiones graves o la muerte si se eleva un peso sobre la capacidad nominal de la grúa o si se usa una combinación de pesos no indicada en la Tabla 9-4 y en la Figura 9-29.

PELIGRO

No se pare cerca ni debajo del contrapeso al quitarlo o instalarlo.

Se pueden producir lesiones graves o la muerte al quitar o instalar el contrapeso si éste se cae del dispositivo de levante.
Retiro del contrapeso

1. Coloque la grúa en una superficie firme y nivelada. Extienda y ajuste los estabilizadores completamente.

2. Coloque la superestructura sobre la parte delantera de la máquina y enganche el bloqueo de la plataforma de giro.

3. Instale dos pernos de elevación roscados en los insertos de elevación de 1.25 x 7 UNC (2, Figura 9-28). Con un dispositivo de levante adecuado, conecte las tiras de levante a los pernos. Después que las tiras están conectadas, elimine la holgura de las tiras.

4. Quite los dos pernos (1, Figura 9-29), las arandelas (2) y las contratuercas (3) que aseguran el contrapeso a la pieza soldada de soporte de la grúa. Eleve y quite el contrapeso de la grúa.

Instalación del contrapeso

1. Coloque la grúa en una superficie firme y nivelada. Extienda y ajuste los estabilizadores completamente.

2. Coloque la superestructura sobre la parte delantera de la máquina y enganche el bloqueo de la plataforma de giro.

3. Instale dos pernos de elevación en los insertos de elevación de 1.25 x 7 UNC (2, Figura 9-28). Con un dispositivo de levante adecuado, conecte tiras a cada perno y eleve y coloque el contrapeso dentro de la pieza soldada de soporte de la grúa.

4. Con el dispositivo de levante todavía conectado, alinee los dos agujeros del contrapeso y la pieza soldada de soporte de la grúa e instale los pernos (1, Figura 9-29), las arandelas (2) y las contratuercas (3).
Tabla 9-4

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Descripción</th>
<th>Figura 9-29 Vista</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBT36-1</td>
<td>N/C</td>
<td>N/C</td>
</tr>
<tr>
<td>NBT40-1 estándar</td>
<td>454 kg (1000 lb)</td>
<td>A</td>
</tr>
<tr>
<td>NBT40-1 + opción 1000</td>
<td>907 kg (2000 lb)</td>
<td>B</td>
</tr>
<tr>
<td>NBT45-1 estándar</td>
<td>2041 kg (4500 lb)</td>
<td>C</td>
</tr>
<tr>
<td>NBT45-1 + opción 1000</td>
<td>2494 kg (5500 lb)</td>
<td>D</td>
</tr>
<tr>
<td>NBT45-1TM</td>
<td>454 kg (1000 lb)</td>
<td>E</td>
</tr>
</tbody>
</table>

FIGURA 9-29

- **Vista A**
- **Vista B**
- **Vista C**
- **Vista D**
- **Vista E**

<table>
<thead>
<tr>
<th>Artículo</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pernos (se usan 2)</td>
</tr>
<tr>
<td>2</td>
<td>Arandela (se usan 4)</td>
</tr>
<tr>
<td>3</td>
<td>Contratuerca (se usan 3)</td>
</tr>
</tbody>
</table>
Especificaciones

TDF

Capacidad de par motor mínima de la TDF 644 Nm (475 lb-pie)
Potencia nominal mínima de TDF .. 67 kW (90 hp) por 1000 rpm del eje de TDF
148 kW (199 hp) por 2200 rpm del eje de la TDF

Sistema hidráulico

Bomba hidráulica... 286 l/min (75.5 gal/min) a 2200 rpm, émbolo axial,
 desplazamiento variable con detección de carga
Desplazamiento ... 130 cm³/rev (7.93 pulg³/rev)
Presión (nominal) .. 320 bar (4600 psi)
Presión (máxima) .. 345 bar (5000 psi)
Capacidad de llenado de caja .. 1.40 l (0.37 gal)
Velocidad mínima de funcionamiento 600 rpm

Sistema de estabilizadores ... 224 bar ±6.9 bar (3250 psi ±100 psi)
Elevación de pluma ... 132.4 l/min a 314 bar (35 gal/min a 4550 psi)
Bajada de pluma ... 64 l/min a 69 bar (17 gal/min a 1000 psi)
Extensión telescópica .. 132.4 l/min a 200 bar (35 gal/min a 2900 psi)
Retracción telescópica .. 64 l/min a 155.1 bar (17 gal/min a 2250 psi)
Sistema de malacate aux./principal y alivio 132.4 l/min a 296 bar (35 gal/min a 4300 psi)
Giro ... 68 l/min a 214 bar +13.7/-00 bar
 (18 gal/min a 3100 psi +200/-00 psi)
Freno de estacionamiento de giro Disco de soltado hidráulico, soltado a 12 bar (175 psi)

Depósito hidráulico

Capacidad estándar de depósito .. 379 l (100 gal)
Capacidad XL de depósito ... 414.8 l (109.6 gal)
Filtro de retorno de depósito .. 5 micrones
Filtro de aspiración de depósito 25 micrones

Válvula multiplicadora hidráulica - opcional

Sistema hidráulico .. Centro abierto o cerrado
 Presión de funcionamiento .. 96.5-138 bar (1400-2000 psi)
 Gama de caudal .. 15-26.5 l/min (4-7 gal/min)
 Presión óptima de funcionamiento 124 bar a 22.7 l/min (1800 psi a 6 gal/min)

Acondicionador de aire

Presión sistema hidráulico de acondicionador de aire 241 bar ±6.9 bar (3500 ±100 psi)
Tiempo mínimo de evacuación ... 30 minutos
Nivel de carga de refrigerante ... 0.9 (±0.014) kg (2 lb ±0.5 oz)
Tipo de refrigerante ... R134a
Tipo de lubricación de acondicionador de aire Glicol de polialquileno (PAG)
Capacidad de lubricación de compresor de acondicionador de aire .. 170.1 g (6 oz)
Capacidad de lubricación de sistema total de acondicionador de aire .. 283.5 g (10 oz)
Sistema de malacate

Cable:
Largo ... 137 m (450 pies)
Diámetro (resistente a la rotación) 16 mm (5/8 pulg)
Resistencia nominal a la rotura 25 582 kg (56 400 lb)
Presión de funcionamiento ... 303.4 ±6.9 bar (4400 ±100 psi)
Caudal ... 132.4 l/min (35 gal/min)

<table>
<thead>
<tr>
<th>Capa</th>
<th>Tracción/capa de cable del malacate</th>
<th>Alta velocidad kN (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>66.7 (15 000)</td>
<td>33.4 (7516)</td>
</tr>
<tr>
<td>2</td>
<td>60.2 (13 529)</td>
<td>30.1 (6765)</td>
</tr>
<tr>
<td>3</td>
<td>54.7 (12 299)</td>
<td>27.4 (6150)</td>
</tr>
<tr>
<td>4</td>
<td>50.2 (11 275)</td>
<td>25.1 (5637)</td>
</tr>
<tr>
<td>5</td>
<td>46.3 (10 407)</td>
<td>23.1 (5204)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capa</th>
<th>Velocidad del cable (sin carga a ralenti rápido del motor)</th>
<th>Alta velocidad m/s (pies/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>43.9 (144)</td>
<td>87.5 (287)</td>
</tr>
<tr>
<td>2</td>
<td>48.5 (159)</td>
<td>97.2 (319)</td>
</tr>
<tr>
<td>3</td>
<td>53.3 (175)</td>
<td>107.0 (351)</td>
</tr>
<tr>
<td>4</td>
<td>58.2 (191)</td>
<td>116.7 (383)</td>
</tr>
<tr>
<td>5</td>
<td>63.1 (207)</td>
<td>126.5 (415)</td>
</tr>
</tbody>
</table>

Velocidades de funcionamiento de equipos

(Rendimiento basado en velocidad gobernada plena y depósito hidráulico a 37.8°C [100°F].)
Giro en 360° ... 30 ± 7 s (1.8 ± 0.2 rpm) con perilla de ajuste cerrada
Elevación de pluma de –10° a 80° 34 ± 5 s
Bajada de pluma 80° a –10° ... 34 ± 5 s
Telescopización de la pluma .. (Vea la Tabla de velocidad de telescopización de la pluma)

<table>
<thead>
<tr>
<th>Largo de pluma</th>
<th>Velocidad de telescopización de la pluma (ángulo de 60° - sin carga con el motor a velocidad alta)</th>
<th>Extender</th>
<th>Retraer</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.44 - 31.39 m (31 - 103 pies)</td>
<td>105 s (±10 s)</td>
<td>105 s (±10 s)</td>
<td></td>
</tr>
<tr>
<td>9.44 - 38.70 m (31 - 127 pies)</td>
<td>120 s (±10 s)</td>
<td>120 s (±10 s)</td>
<td></td>
</tr>
<tr>
<td>10.36 - 43.28 m (34 - 142 pies)</td>
<td>135 s (±10 s)</td>
<td>135 s (±10 s)</td>
<td></td>
</tr>
<tr>
<td>11.88 - 49.07 m (39 - 161 pies)</td>
<td>150 s (±10 s)</td>
<td>150 s (±10 s)</td>
<td></td>
</tr>
</tbody>
</table>

Extensión de viga de estabilizador 10 ±3 s
Retracción de viga de estabilizador 10 ±3 s
Extensión de gato de estabilizador 10 ±3 s
Retracción de gato de estabilizador 10 ±3 s
INSTALACIÓN DE LA GRÚA

MANUAL DE SERVICIO DE LA NBT40-1

Contrapeso

NBT36-1 Plancha de contrapeso .. N/A
NBT40-1 Contrapeso estándar ... 454 kg (1000 lb)
NBT40-1 + 1000 lb contrapeso opcional 907 kg (2000 lb)
NBT45-1 Contrapeso estándar ... 2041 kg (4500 lb)
NBT45-1 + 1000 lb contrapeso opcional 2494 kg (5500 lb)
NBT45-1 TM ... 454 kg (1000 lb)

Generalidades

NBT36-1... 32.6 t métricas (36 T) a un radio de 2.13 m (7 pies)
NBT40-1... 36.3 t métricas (40 T) a un radio de 2.13 m (7 pies)
NBT45-1... 40.8 t métricas (45 T) a un radio de 2.13 m (7 pies)
*NBT36-1 Pluma 103 pies.. 14 203 kg (31 313 lb) –205.5 cm (–80.9 pulg) CGH
*NBT36-1 Pluma 127 pies.. 14 798 kg (31 623 lb) –214.1 cm (–84.3 pulg) CGH
*NBT40-1 Pluma 103 pies.. 15 109 kg (33 441 lb) –179.3 cm (–70.6 pulg) CGH
*NBT40-1 Pluma 127 pies.. 15 763 kg (34 751 lb) –188.7 cm (–74.3 pulg) CGH
*NBT40-1 Pluma 142 pies.. 16 350 kg (36 046 lb) –210.8 cm (–83.0 pulg) CGH
*NBT40-1 EXTB 103 pies... 15 727 kg (34 672 lb) –202.7 cm (–79.8 pulg) CGH
*NBT40-1 EXTB 127 pies... 16 321 kg (35 982 lb) –210.8 cm (–83.0 pulg) CGH
*NBT40-1 EXTB 142 pies... 16 909 kg (37 277 lb) –231.4 cm (–91.1 pulg) CGH
*NBT45-1 Pluma 103 pies.. 16 741 kg (36 908 lb) –139.7 cm (–55.0 pulg) CGH
*NBT45-1 Pluma 127 pies.. 17 341 kg (38 036 lb) –170.4 cm (–67.0 pulg) CGH
*NBT45-1 Pluma 142 pies.. 17 922 kg (39 513 lb) –170.9 cm (–67.3 pulg) CGH
*NBT45-1 Pluma 161 pies.. 18 401 kg (40 867 lb) –205.2 cm (–80.8 pulg) CGH
*NBT45-1 EXTB 103 pies... 17 300 kg (37 931 lb) –162.0 cm (–63.8 pulg) CGH
*NBT45-1 EXTB 127 pies... 17 894 kg (39 449 lb) –170.7 cm (–67.2 pulg) CGH
*NBT45-1 EXTB 142 pies... 18 481 kg (40 744 lb) –191.0 cm (–75.2 pulg) CGH
*NBT45-1 EXTB 161 pies... 18 959 kg (41 798 lb) –224.0 cm (–88.2 pulg) CGH

NOTA: *Los pesos incluyen solo la superestructura, pluma, caja de torsión de contrapeso (EXTB = caja de torsión extendida), plataforma, cilindro de elevación, depósito hidráulico y todos los fluidos. El centro de gravedad horizontal se mide desde la línea central de rotación de la grúa (el número negativo indica que el CGH es hacia la punta de la pluma, no hacia los malacates).

Peso de la pluma - incluye malacate/cable

Pluma de 103 pies... 5869 kg (12 940 lb)
Pluma de 127 pies... 6504 kg (14 339 lb)
Pluma de 142 pies... 6849 kg (15 100 lb)
Pluma de 161 pies... 7854 kg (17 315 lb)
DIAGRAMA DE DIMENSIONES
Caja de torsión extendida de la NBT40-1 y NBT45-1

FIGURA 9-30

Giro de cola de contrapeso R2622
Giro de cabina R1919

Retráctil
- 951.2 cm (31 pies 2 pulg)
- 952 cm (31 pies 3 pulg)
- 1043.1 cm (34 pies 3 pulg)
- 1170.7 cm (38 pies 5 pulg)

 Extendida
- 3139.5 cm (103 pies)
- 3869.7 cm (127 pies)
- 4318.8 cm (141 pies 8 pulg)
- 4897 cm (160 pies 8 pulg)

290.4 cm (9 pies 6 pulg)

Superficie de montaje
- 132.4 cm (4 pies 4 pulg)
- 199.7 cm (6 pies 7 pulg)
- 750.3 cm (24 pies 7 pulg) extensión completa
- 534.9 cm (17 pies 6 pulg) extensión con separación media

Rotación central
- 120.1 cm (3 pies 11 pulg)

51.9 cm (1 pie 8 pulg)
572.1 cm (18 pies 9 pulg)
747.5 cm (24 pies 6 pulg)
823.9 cm (27 pies)

24.5 cm (10 pulg)
251.6 cm (8 pies 3 pulg)

8839--1
8839--2
8839--3

964.7 cm (31 pies 8 pulg)
251.6 cm (8 pies 3 pulg)

988.3 cm (32 pies)

964.7 cm (31 pies 8 pulg)
251.6 cm (8 pies 3 pulg)
Caja de torsión estándar de la NBT40-1 y NBT45-1

Retraída
951.2 cm (31 pies 2 pulg)
952 cm (31 pies 3 pulg)
1043.1 cm (34 pies 3 pulg)
1170.7 cm (38 pies 5 pulg)

Extendida
3139.5 cm (103 pies)
3869.7 cm (127 pies)
4318.8 cm (141 pies 8 pulg)
4897 cm (160 pies 8 pulg)

966 cm (31 pies 8 pulg)

273.7 cm (9 pies)

132.4 cm (4 pies 4 pulg)

1041.7 cm (34 pies 3 pulg)

24.5 cm (10 pulg)

251.6 cm (8 pies 3 pulg)

51.9 cm (1 pie 8 pulg)

151.8 cm (5 pies)

440 cm (14 pies 5 pulg)

615.4 cm (20 pies 2 pulg)

691.9 cm (22 pies 8 pulg)

120.1 cm (3 pies 11 pulg)

139.7 cm (6 pies 7 pulg)

64.6 cm (2 pies 1 pulg)

199.7 cm (6 pies 7 pulg)

190.7 cm (6 pies 3 pulg)

534.9 cm (17 pies 6 pulg) extensión con separación media

750.3 cm (24 pies 7 pulg) extensión completa

Superficie de montaje

Rotación central
Caja de torsión extendida de la NBT36-1

FIGURA 9-32

<table>
<thead>
<tr>
<th>Retráctil</th>
<th>951.2 cm (31 pies 2 pulg)</th>
<th>952 cm (31 pies 3 pulg)</th>
<th>1043.1 cm (34 pies 3 pulg)</th>
<th>1170.7 cm (38 pies 5 pulg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extendida</td>
<td>3139.5 cm (103 pies)</td>
<td>3869.7 cm (127 pies)</td>
<td>4318.8 cm (141 pies 8 pulg)</td>
<td>4897 cm (160 pies 8 pulg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Superficie de montaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>132.4 cm (4 pies 4 pulg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Superficie de montaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>199.7 cm (6 pies 7 pulg)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Superficie de montaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.6 cm (2 pies 1 pulg)</td>
</tr>
</tbody>
</table>

Giro de cola de contrapeso R2622
Giro de cabina R1919
Retráctil 951.2 cm (31 pies 2 pulg) 952 cm (31 pies 3 pulg) 1043.1 cm (34 pies 3 pulg) 1170.7 cm (38 pies 5 pulg)
Extendida 3139.5 cm (103 pies) 3869.7 cm (127 pies) 4318.8 cm (141 pies 8 pulg) 4897 cm (160 pies 8 pulg)

Superficie de montaje
132.4 cm (4 pies 4 pulg)
199.7 cm (6 pies 7 pulg)
64.6 cm (2 pies 1 pulg)
ESTA PÁGINA HA SIDO DEJADA EN BLANCO INTENCIONALMENTE
SECCIÓN 10
DIAGRAMAS ESQUEMÁTICOS

Para su comodidad, esta sección contiene la versión más reciente de los diagramas esquemáticos disponible al momento de la impresión.
ESTA PÁGINA HA SIDO DEJADA EN BLANCO INTENCIONALMENTE